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Myocarditis: From Bench to Bedside

Myocarditis, particularly in children, remains a major cause of morbidity and mortality
worldwide.»? Dilated cardiomyopathy (DCM) is the major reason for cardiac trans-
plantation in the United States and Europe, with an annual incidence of 2 to 8 cases per
100,000 and an estimated prevalence of 36 per 100,000.% The idiopathic form of DCM
accounts for approximately 50% of the patients undergoing transplantation. Each year in
the United States more than 750,000 cases of heart failure are reported,” with approximately
250,000 deaths, and myocarditis or DCM probably accounts for 25% of these cases.” At
present, the treatment of these conditions is limited to management of the symptoms or
transplantation, and the cost is thought to be $3 billion to $4 billion annually. Therefore,
understanding the basis for this disorder and developing preventive and disease-specific
therapies would have a major impact on health care in the United States. In this review, we
describe some of the progress toward understanding the etiologies of these disorders in
children and clarification of the mechanisms of pathogenesis.

DIAGNOSIS OF VIRAL INFECTION

HISTORICAL PERSPECTIVES

Viral infections of the heart are important causes of morbidity and mortality in children and
adults. A patient who has acute myocarditis, the best studied of these infections, typically
presents with severe clinical manifestations, especially in the newborn period.® Idiopathic
DCM appears to occur as a late sequela of acute or chronic viral myocarditis,"”!° due to

7 or an autoimmune phenomenon due to previous exposure to the

persistence of virus
inciting virus."! The affected individual may require long-term medical therapy for con-
gestive heart failure and, in many cases, heart transplantation may be required. In some
cases, sudden cardiac death occurs,? particularly in athletes.!?

Endomyocardial biopsy (EMB) and histopathologic study demonstrating cellular
infiltrates (particularly lymphocytes), edema, myocyte necrosis, and myocardial scarring
were developed to improve diagnostic capabilities, but results were inconsistent among
pathologists. The so-called Dallas criteria,'® described in 1987, were developed in an
attempt to improve the high rate of diagnostic disagreement among pathologists by using
uniform criteria. However, because of insensitivity'* and possible risks involved in biop-
sies, particularly in small or critically ill children, many centers abandoned EMB as a
diagnostic tool.

An initial association between virus infection and the development of myocardial dis-
case was made several decades ago. Grist and Bell'® presented comprehensive serologic data

correlating enterovirus infection with myocarditis. However, the role of these viruses in
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Chapter 23: Childhood Myocarditis and Dilated Cardiomyopathy

DCM was less well established and based mainly on the observation of high titers of neu-
tralizing antibody in cases of sudden-onset disease.'® This led to the proposal that DCM
is a progression from an enteroviral myocarditis.

Enteroviruses, and particularly the coxsackievirus B (CVB) group, have a major posi-
tive tropism for skeletal and cardiac muscle. However, isolation of infectious virus from
patients with heart muscle disease is rare.!” For example, in a study of EMB samples from
70 patients with myocarditis or DCM, no enterovirus was isolated from or virus-specific
antigens detected in any of these samples,'® despite evidence of virus association from
retrospective serologic study.

Detection of virus-specific IgM is more significant, in that it usually reflects recent or
persisting infection. CVB-specific IgM was detected in nearly 40% of patients with
myocarditis compared with none of the controls."”” Such IgM responses have been shown
to persist for up to 6 months.2’ CVB-specific IgM responses have also been reported in
patients with end-stage DCM undergoing cardiac transplantation, with the IgM responses
persisting for up to 19 months before transplantation.?!

The concept of an enteroviral origin of heart muscle disease is reinforced by animal
models of myocarditis and DCM. A cardiotropic strain of coxsackievirus B3 (CVB3)
induces inflammatory heart muscle disease in mice. Infectious virus cannot be isolated

from myocardium after the first 2 to 3 weeks,”>%?

although many of the animals progress
to left ventricular disease reminiscent of DCM, 22> supporting the hypothesis that DCM

can be a sequela of a viral myocarditis.

MOLECULAR DIAGNOSTIC TECHNIQUES
The failure to isolate virus or to detect viral antigens in patient EMB samples, despite the
serologic demonstration of persistent infection, prompted the development of virus-specific
molecular hybridization probes. These were designed to detect the presence of enteroviral
RNA sequences in myocardial or other tissue samples. The studies by Bowles and cowork-
ers?®? and by Kandolf et al.?2% led to the direct demonstration of persisting enteroviral
infection of the myocardium in myocarditis patients and supported the hypothesis that
DCM was caused by enteroviral persistence and is a late sequela of viral myocarditis.
Polymerase chain reaction (PCR) has been used in the rapid detection of viral sequences in
many tissues and body fluids, including the myocardium of patients with suspected
myocarditis or DCM.?*3¢ Evidence from our laboratory suggested that adenovirus often
is found in hearts of affected children and could be an important cause of myocarditis
and DCM.?7-38

We (unpublished data) have studied more than 750 myocardial samples from patients
with myocarditis or DCM (or both) by using PCR to detect a range of viruses, including the

enteroviruses, adenoviruses, cytomegalovirus (CMV), herpes simplex virus, Epstein-Barr
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virus, parvovirus, influenza virus, and respiratory syncytial virus. The patients were divided
into groups by age: neonates (age between 1 day and 1 month); infants (age between 1
month and 1 year); toddlers (age between 1 year and 5 years); children (age between 5 years
and 13 years); adolescents (age between 13 years and 18 years); and adults (age greater than
18 years). More than 65% of the samples came from patients between the ages of 1 day and
13 years; more than 600 of the patients had a diagnosis of myocarditis, and the remainder
had DCM. More than 200 samples from individuals with medical histories inconsistent
with these criteria were included as unaffected, age-matched controls.

The overall prognosis of the patients with acute myocarditis was poor, with an overall
mortality of more than 50%. Approximately 40% of the DCM patients underwent heart
transplantation. The majority of patients with myocarditis had poor recovery of their
cardiac function, while the remaining patients had mild recovery with persistence of
depressed cardiac function or complete recovery or underwent transplantation.

Serologic findings consistent with viral infection were seen in 38% of patients studied,
primarily enterovirus and CMV, from acute and convalescent titers. Only 7 patients had
positive postmortem viral cultures from multiple organs, including the heart. Four of these
patients had postmortem cultures positive for enterovirus from heart, brain, liver, and
kidney, and 3 patients grew adenovirus from specimens of the lungs and heart. Two
patients grew CMV from specimens of the heart and lungs (1 in a patient whose sample
grew enterovirus, 1 in a patient whose sample grew adenovirus). One other child had
adenoviral particles in the heart by electron microscopy but had negative viral cultures.

PCR amplified a viral product in approximately 40% of the samples obtained from
patients with myocarditis compared with 1.5% of control samples. Of these positive
myocarditis samples, adenovirus was detected in more than 50% (80% adenovirus type 2,
20% type 5; Fig. 23-1 and 23-2; see color plate 41) and enterovirus in 33%, whereas the
remainder were mainly CMV but also included a few herpes simplex virus type 1, Epstein-
Barr virus, parvovirus, influenza, and respiratory syncytial virus positives. Compared with
the positive peripheral cultures obtained, 80% amplified viral genome, with 76% agree-
ment in the results obtained by PCR. PCR analysis of blood drawn from 300 patients at
the same time that tissue was obtained demonstrated only 3 of 300 blood samples analyzed
by PCR amplified viral genome (CMV in 2, enterovirus in 1).

In the patients with DCM, 20% were positive for viral genome: adenovirus in 60%
of the PCR-positive samples and enterovirus in the remaining 40%. None of the blood
samples from these patients were PCR positive.

These data show that adenovirus is detected at least as often as the enteroviruses in the
hearts of children and adult patients.’”"* Further, no significant differences were observed
among age groups with respect to the relative frequencies of detection of adenovirus and

enterovirus.
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Fig. 23-1. The detection of adenovirus DNA by nested polymerase chain reaction in tracheal aspirate (7)
and endomyocardial biopsy (B) samples in 2 patients: one positive for adenovirus type 5 (patient 1) and the
other negative (patient 2). Lanes - are water controls and + is adenovirus type 2 positive control DNA. Lane
M is a 100-bp DNA ladder (Life Technologies). The adenovirus identified in each of the samples from
patient 1 was determined to be type 5 by DNA sequencing of the polymerase chain reaction product.

v i v

ACAAGG ACT ACCAACAGGT GGGCATCCT ACACCAACACAACAACT
30 40 - 50 80

Fig. 23-2. DNA sequence analysis of an adenovirus-specific polymerase chain reaction product. The region
shown is highly divergent between adenovirus serotypes, allowing rapid identification of the virus ampli-
fied—in this case adenovirus type 5. Analysis of the 3 nucleotides indicated is sufficient to differentiate all
adenovirus serotypes sequenced to date. See color plate 41.
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Different isolates of CVB3 vary in their cardiovirulence. Tu et al.©° reported that a
single nucleotide difference, at position 234 of the CVB3 genome, determined the pheno-
type of the virus. If this nucleotide was a cytidine, the virus was attenuated compared to
another strain of CVB3 with uridine at this location. Subsequently it was reported that
in natural isolates of CVB3, regardless of cardiovirulence, this position was invariably
uridine, suggesting that other nucleotides are important in determining the viral pheno-
type.”! By construction of chimeras from cardiovirulent and noncardiovirulent strains of
CVBS3, critical regions were identified within the 5" untranslated region, including within
stem-loop motifs associated with the internal ribosome entry site.*? In addition, 2 amino
acid changes within the VP2 and VP3 structural proteins had some additive effects on car-
diovirulence. DNA sequencing of the genome of adenovirus variants detected by PCR
could potentially distinguish between cardiovirulent and noncardiovirulent adenovirus
subtypes, although the size of the adenoviral genome and the number of adenoviral types
(more than 40 have been identified) may make such an analysis impractical and likely
uninformative. To date, it appears that the group C adenoviruses are primarily associated

with heart muscle disease.

HEART DISEASE IN CHILDREN INFECTED WITH HUMAN
IMMUNODEFICIENCY VIRUS

Human immunodeficiency virus (HIV) infection is increasingly recognized as an important
cause of heart disease, particularly myocarditis and DCM. However, the pathogenesis of the
heart-muscle disease in the acquired immunodeficiency syndrome is unclear. CMV
sequences have been detected in myocardial samples. For example, Wu et al.3 reported a
study of the role of CMV infection in the development of HIV-associated cardiomyopathy.
Using probes derived from the CMV immediate-early and delayed-early genes, they analyzed
by in situ hybridization EMB samples from 12 HIV-infected patients with global left ven-
tricular hypokinesis demonstrated on 2-dimensional echocardiography and 8 autopsy
cardiac samples from HIV-infected patients without cardiac disease during life. Of the 12
EMB specimens, 6 had hybridization for transcripts of the CMV immediate-early gene,
consistent with nonpermissive or latent infection. Similar patterns were not found in any
of the 8 autopsy control samples. All 6 patients presented with unexplained congestive
heart failure and had biopsy samples with immunohistochemical evidence of increased
myocardial major histocompatibility complex (MHC) class I expression, a finding typical
of non-HIV myocarditis. None of the EMB samples had characteristic CMV inclusions
and no specific hybridization was noted with the delayed-early gene probe, suggesting that
no active viral DNA replication was present. Only 2 of the 6 patients with myocyte
hybridization with the immediate-early probe had clinical evidence of solid organ infection

with CMV at presentation with cardiovascular complaints.
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The first comprehensive study of the etiologic basis of heart disease was reported by
Barbaro et al.* They performed a prospective, long-term clinical and echocardiographic
follow-up study of 952 asymptomatic HIV-positive patients to assess the incidence of
DCM. All patients with a diagnosis of DCM underwent EMB for histologic, immuno-
histologic, and virologic assessment. During a mean follow-up period of 60 months, an
echocardiographic diagnosis of DCM was made in 76 patients (8%). The incidence of
DCM was higher in patients with a CD4 count of less than 400 cells/pL and in those who
received therapy with zidovudine. A histologic diagnosis of myocarditis was made in 63 of
the patients with DCM (83%). Inflammatory infiltrates were predominantly composed of
CD3 and CD8 lymphocytes, with staining for MHC class I antigens in 71% of the
patients. In the myocytes of 58 patients, HIV nucleic acid sequences were detected by in
situ hybridization, and active myocarditis was documented in 36 of the 58. Among these
36 patients, 6 were also infected with CVB (17%), 2 with CMV (6%), and 1 with Epstein-
Barr virus (3%). They concluded that DCM might be related to a direct action of HIV on
the myocardial tissue or to an autoimmune process induced by HIV, possibly in associa-
tion with other cardiotropic viruses. Although these data indicate a similar origin for
myocarditis and DCM in HIV-infected adults and non-HIV-infected adults, the frequency
of detection of CMV was somewhat lower than in previous studies.*?

In 1999 we*® reported a similar study in 32 pediatric patients with advanced HIV disease.
In 13 of the 32 samples (41%) from HIV-infected children, 1 or more virus types were
detected. The virus identified most often was adenovirus (10 of 32 = 31%), followed by
CMV (7 of 32 = 22%).

DNA sequence analysis of the adenoviruses amplified from the HIV-infected patient
samples demonstrated only adenovirus type 5. This is in contrast to the apparent pre-
dominance of adenovirus type 2 in non-HIV-infected children with myocarditis or DCM
(see previous section). This difference may reflect a different spectrum of adenoviral sus-
ceptibility in HIV-infected and non-HIV-infected children or a difference in viral
pathogenesis in immunocompromised children. However, it does appear that the group C
adenoviruses are identified most often in myocardial samples.

Active myocarditis was observed in 11 of the 32 HIV-infected patient myocardial
samples (34%), and infiltrates borderline for myocarditis were observed in another 13
cases—a frequency of myocarditis considerably higher than in the study by Barbaro et al.**
However, the pediatric patients studied were those with advanced, end-stage disease,
whereas the patients studied by Barbaro and colleagues were initially asymptomatic. Our
results may indicate that children with HIV are more prone to the development of
myocarditis, perhaps because of a greater susceptibility to infection with cardiotropic
viruses. Adenovirus was detected in 4 of the 11 samples with myocarditis, in 3 samples with

borderline infiltrates, in 1 patient with infiltrates confined to the epicardium, and in 2 with
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no histologic evidence of inflammation. Of the 2 patients with adenovirus but no inflam-
mation, 1 was reported to have died of congestive heart failure and the other of adenoviral
pneumonia. Adenovirus was detected in 3 of the 6 patients with congestive heart failure;
only 1 had myocardial infiltrates, and these were confined to the epicardium. Among the
3 patients with DCM, 1 was positive for adenovirus. Seven of the 18 patients (39%) with
postmortem cardiomegaly were positive for adenovirus by PCR. Two patients were
reported to have adenoviral pneumonia at the time of death; both patients were positive
for adenoviral DNA by PCR, including 1 with disseminated infection and positive
myocardial culture.

Interestingly, 6 of 10 patients positive for adenovirus had other organisms identified
in the heart. All 6 had myocardial inflammation; however, only 1 had clinical cardiac
symptoms. This contrasts sharply with the findings in 4 patients in whom adenovirus
was the sole myocardial isolate; all 4 were symptomatic and only 2 of 4 had myocardial
infiltrates. The frequency of postmortem cardiomegaly was similar in both groups of
patients. These clinical and pathologic features in patients with PCR evidence of adeno-
virus support a pathogenic role for this virus in the development of heart disease in
HIV-infected pediatric patients.

CMYV was detected in 3 myocarditis samples and in 4 samples with borderline lympho-
cytic infiltrates. Extracardiac systemic infection with the virus was detected by culture or
by histologic study (or both) in 6 of the 7 patients, considerably more often than detected
in adult patients by Wu and colleagues.” Two patients had clinical cardiac symptoms,
including 1 who had terminal acute congestive heart failure and myocardial infiltrates
borderline for myocarditis. In the other, borderline myocarditis and disseminated systemic
CMV infection were identified. Clinically, the heart was enlarged on chest radiograph and
the patient was hypotensive. Another patient positive for CMV by myocardial culture
and PCR was clinically asymptomatic but had myocarditis and mildly decreased left
ventricular function assessed 1 week before death.

The relatively mild inflammatory infiltrates in most of the virus-positive samples could
result from several things, including the fact that these HIV-infected patients were immuno-
compromised, precluding a significant cellular immune response against infected cells.
Indeed, in 26 of 29 patients with CD4 lymphocyte counts available to permit Centers for
Disease Control and Prevention classification, class C3 reflected severe immunosuppres-
sion. Additionally, we have observed in non-HIV-infected myocarditis patients that the
level of inflammatory infiltration is less in adenovirus-infected samples than in, for example,
enterovirus-infected samples.”’

These data indicate that in HIV-infected children and adults, myocarditis and DCM
can develop as a result of infection of the myocardium by the same viruses that infect non-

immunocompromised individuals (ie, adenovirus, enteroviruses, and CMV).
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ALTERNATIVE DIAGNOSTIC APPROACHES

Other important causes of morbidity and mortality in children are infectious disorders of
the respiratory tract.*® Rapid respiratory and metabolic deterioration may occur, requiring
intubation and mechanical ventilation. Respiratory decompensation is often accompanied
by cardiac dysfunction due to myocarditis.!* 4748

To determine whether the analysis of tracheal aspirate samples would be informative for
the diagnosis of viral myocarditis, Akhtar et al.* analyzed tracheal aspirate samples and
EMB samples from 10 patients presenting with myocarditis or DCM, with or without
presumed pneumonia by PCR, for evidence of viral infection. Of the 7 patients with PCR-
positive tracheal aspirate samples, 4 were also positive by aspirate culture (enterovirus).
In all cases, PCR performed on EMB specimens identified the same virus as detected in the
tracheal aspirate samples. In the case of the child diagnosed by tracheal aspirate PCR to
have EBV, EMB PCR also identified this relatively uncommon cause of pneumonitis and
myocarditis. Confirmation of this diagnosis was later provided by serologic test during
convalescence. Another patient who presented clinically with myocarditis and pneumonitis
was positive by PCR for adenovirus from 2 consecutive tracheal aspirate samples (Fig. 23-1)
and also was positive by PCR for adenovirus from EMB samples. In another case of
myocarditis with pneumonia, the PCR, in addition to amplifying the same agent as isolated
by culture (enterovirus), also amplified the adenovirus genome. Adenovirus respiratory
tract infections are common in children, and in this case it may have contributed to
myocardial injury.

These results suggest that tracheal aspirate samples are a useful substrate for PCR
analysis in intubated pediatric patients with suspected viral pneumonitis, with or without
myocarditis. Tracheal aspirate sample PCR may provide a safer means than EMB to arrive at
an etiologic diagnosis in viral myocarditis, especially when the right ventricular free wall and
outflow tracts are pathologically thinned. However, these results should not be generalized
to include, for example, any unselected patient with intubated respiratory disease or children
with known cardiac dysfunction and recurrent cardiac decompensation. Confirmation of

these findings is needed before changes in diagnostic methodology are embraced.

TRANSPLANT REJECTION AND MYOCARDITIS

Cardiac transplantation in children is a lifesaving procedure aimed at sustaining long-
term, productive survival in recipients. The major short-term and long-term risks
preventing extended survival include allograft rejection, coronary artery disease in the
transplanted organ, and lymphoproliferative disease, but the underlying causes of these

disorders are not completely understood. The diagnosis of allograft rejection relies on
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histopathologic criteria but these criteria are known to mimic myocarditis in patients who
have not received a transplant.>*>!

The association between viral genome in the myocardium and concomitant rejection
is known. Schowengerdt et al.>®! reported results of the analysis by PCR of 40 patients
who underwent serial right ventricular EMB for rejection surveillance after heart trans-
plantation, with viruses identified in 41 samples from 21 patients. Viral genomes amplified
included CMV in 16 samples, adenovirus in 14, enterovirus in 6, parvovirus in 3, and
HSV in 2. In 13 of the 21 patients positive for viral genome, EMB histologic scores were
consistent with multifocal moderate-to-severe rejection (Internal Society for Heart and
Lung Transplantation scores of 3A or greater). However, the longer-term implications of
the detection of virus by PCR are unclear.

Adenovirus infection in the transplanted lung is significantly associated with graft
failure, histologic obliterative bronchiolitis, and death. Bridges et al.’? reported that of 16
patients undergoing lung or heart-lung transplantation, virus was identified in the trans-
planted lung during follow-up on 26 occasions; adenovirus was identified most frequently
(8 of 16 patients) and had the greatest impact on outcome. In 2 patients with early fulminant
infection, adenovirus was also identified in the donor. Adenovirus was significantly asso-
ciated with respiratory failure leading to death or graft loss and with the histologic diagnosis
of obliterative bronchiolitis.

In a study of 45 explanted hearts from patients who underwent heart transplantation,
enteroviral genome was detectable in only 1 of 27 patients with DCM and in 1 patient with
lymphocytic myocarditis.>® The enterovirus-positive DCM patient showed a higher index
of severe rejection (> 3A) in the first 6 months, compared with the other patients tested;
the enterovirus-positive myocarditis patient died of disease recurrence 2 months after
transplantation.

These findings suggest that the identification of virus, and particularly adenovirus and
enterovirus, is predictive of a poor prognosis in organ transplant recipients, further con-
firming the similarity between myocarditis and rejection. They also indicate a need for the
development of a rapid viral diagnostic technique to determine the suitability of a donor

organ for transplantation.

ANIMAL MODELS OF MYOCARDITIS/DCM

In many strains of mice, inoculation with CVB3 results in myocarditis!® The myocardium

heals once infectious virus is cleared. However, in some strains of immunocompetent
weanling mice, such as C3H/He] or A.SW, virus can be isolated from the myocardium
during the first few days after inoculation. Histopathologic changes characteristic of
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myocarditis develop only after infectious virus is no longer present. In such models
myocardial damage is biphasic. The initial acute phase involves virus replication and cell
lysis, with immune clearance of virus, followed by a chronic phase that involves infiltration
of the myocardium by inflammatory cells and the production of cardiac-specific auto-
antibodies. A murine model of DCM, after infection with encephalomyocarditis virus,
has been described.>** About 3 months after the development of myocarditis, cardiac
dilatation, myocardial fibrosis, and hypertrophy of myocardial fibers occur, in the absence
of cellular infiltration or myocardial necrosis. Despite the fact that infectious virus cannot
be isolated after the first few days, viral genomic RNA sequences were detected in some
samples at 3 months. A similar model using CVB3 in Swiss ICR mice has been described.

To date there have been no animal models of adenovirus-induced heart disease
reported. However, the cotton rat (Sigmodon hispidus) is susceptible to infection by some
strains of human adenovirus,” and it was reported that the intranasal inoculation of cotton
rats with Ad5 resulted in the development of pneumonitis.”® Cellular infiltration of the
interstitial and intra-alveolar areas and the peribronchiolar and perivascular regions was
seen, with moderate damage occurring to the bronchiolar epithelium. The histologic
changes could be divided into 2 phases. The first, probably due to the action of cytokines,
involved the infiltration of primarily monocyrtes, macrophages, and neutrophils, but rarely
lymphocytes, into the alveoli, bronchial epithelium, and peribronchiolar regions. The
second phase, probably a cytotoxic T-cell response to the virus, involved a predominantly
lymphocytic infiltrate into the peribronchiolar and perivascular areas. The degree of
histopathologic change depended on the initial adenovirus dose, with doses of greater than
10® plaque-forming units (pfu) resulting in severe damage to the type II alveolar cells.

We>? have begun to develop a model of adenovirus-induced myocarditis in the cotton
rat. Adenovirus type 5 (107 pfu) was administered to cotton rats by intranasal (IN), intra-
peritoneal (IP), or intracardiac (IC) injection. The animals were killed (2 per group) after
4, 14, or 28 days. In addition, 2 IC injected animals were killed after 3 months.

Adenoviral DNA was detected in the lungs of all animals at days 4 and 14, except for
1 animal receiving virus by IP injection that was negative at day 14. At day 28, only the
animals administered virus by the IN or IC route were positive (3-month IC animals were
not tested). Adenoviral DNA was detected in the hearts of all animals inoculated by the IC
route, even at 3 months postinjection (Figure 23-3). Adenoviral DNA was detected in the
hearts of only IN and IP animals at day 4 and 1 IP injected animal at day 14.

Animals inoculated IN were considered normal, whereas animals inoculated IP had
borderline myocarditis at day 4 and myocarditis at days 14 and 28 (Fig. 23-4; see color plate 42).
Even at day 14 there was evidence of fibrosis and myocyte necrosis. Animals inoculated IC
had epicarditis, with subepicardial myocarditis at day 4 and myocarditis at 14 days, 28 days,

and 3 months.
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Fig. 23-3. The detection of adenoviral DNA by nested polymerase chain reaction in myocardial samples
from 2 cotton rats injected with adenovirus, 3 months postinjection (lanes $2). Lanes S1 are myocardial
samples from sham-infected animals. See Figure 23-1 for details.

Fig. 23-4. Myocarditis in the cotton rat heart. A, Hematoxylin-eosin staining shows a discrete cluster of

lymphocytes and macrophages adjacent to a degenerating myocyte. There is also focal loss of myocytes with
early fibrous scarring. B, T-cell immunostain demonstrates a cluster of cells surrounding myocytes. (x132.)
See color plate 42.

From these preliminary data, it appears that the IP and IC administration of adenovirus
result in the development of myocarditis in the cotton rat. The myocarditis demonstrated
in these animals is histologically mild, similar to adenovirus myocarditis in humans.
Further, wild-type adenovirus is capable of persisting in the myocardium of cotton rats for

at least 3 months.
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PATHOGENESIS OF HEART FAILURE IN MYOCARDITIS AND DCM

VIRAL PERSISTENCE

Although the evidence is compelling that enteroviruses are capable of persisting in the
myocardium of patients with myocarditis or DCM in the absence of virus-antigen expres-
sion or the formation of infectious virions, few reports relate to the specific nature of the
mechanism. During a normal lytic infection, enteroviral RNA replication is mediated
by the virus-encoded RNA-dependent RNA polymerase via a replication intermediate,
comprising the positive-sense genomic strand and a negative-template strand. The positive-
strand RNA is normally present in 100-fold excess over the negative strand as a result of
asymmetric synthesis. However, in the myocardium of patients with myocarditis or
DCM infected with enterovirus, approximately equimolar amounts of the positive and
negative strands are synthesized.®*®! Tt is possible that the synthesis of complementary
RNA strands results in interference in translation of the genomic RNA because of the
RNA-RNA hybridization: such double-stranded RNA is likely to be more stable than single-
stranded RNA.

Most of the information relating to adenovirus latency or persistence has come from
the study of infected tonsils or adenoids. Infectious virus can rarely be isolated directly
from the tissue but is recovered after cultivation of the tissue®? or from stimulated lym-
phocytes®® in vitro. After propagation of tonsillar tissue in vitro, adenoviral DNA can be
detected in high molecular weight DNA fractions, suggesting that the viral genome has
been integrated into the host chromosomes.®* Latent infection of lung by adenovirus can
also cause chronic obstructive pulmonary disease,®> with adenoviral DNA integrating in a
linear fashion and subsequent rearrangement and amplification of the early regions, par-
ticularly E1A.%> The E1A region has been implicated in the sensitization of the infected
cells to destruction by cytokines® and in the induction of apoptosis.*” This region could
be an important component of the mechanism of inflammatory responses against chroni-
cally infected cells.

APOPTOSIS AND IMMUNE RESPONSE

Little is understood about the pathogenesis underlying the development of heart failure
associated with myocarditis or DCM. Although the pathologic features of acute myocarditis
are well documented, hearts from patients with DCM display relatively nonspecific histo-
logic changes. These include widespread myocardial fibrosis and associated hypertrophy of
surviving cardiomyocytes. Apoptosis of cardiomyocytes may be responsible for these
changes.®® In a small number of cases apoptotic cells were detected in myocardial tissue
samples from patients with DCM by an in situ labeling protocol (TUNEL), including

adenovirus-infected samples.**”°
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Thus, it is possible that in adenovirus-infected cardiomyocytes the dissociated expres-
sion of E1A and E1B could result in the induction of apoptosis by overexpression of E1A,
by underexpression of E1B, or by expression of mutated forms of the E1B gene products.
Alternatively, other adenoviral gene products may influence the apoptotic pathway in, as
yet, uncharacterized ways.

Another effect of the expression of E1A is to shut down the expression of O-myosin
heavy chain by transcriptional repression.”! The long-term effect of this on the myo-
cardium could be to impair cardiac myocyte function, potentially leading to congestive
heart failure.

The adenoviruses have strategies for modulating the immune response. Several
adenoviral-encoded proteins are capable of interacting with host immune components.5’
These include proteins encoded by the E3 region that can protect cells from tumor
necrosis factor (TNF)-mediated lysis’? and down-regulation of MHC class I antigen
expression.”> The E1A proteins are capable of promoting the induction of apoptosis,®’
inhibiting interleukin (IL)-6 expression,”* and interfering with IL-6 signal transduction
pathways.”” These functions of E1A may be particularly pertinent for explaining the
myocardial abnormalities observed in DCM patients: IL-6 promotes lymphocyte activa-
tion, and this was reduced in the adenovirus-infected patient samples in the study by
Pauschinger et al.*

The presence of mononuclear cell infiltrates within the heart is a characteristic of
myocarditis. These mononuclear cells are a significant source of the cytokines IL-1f and
TNE Henke et al.”® demonstrated the release of TNF-0; and IL-1f by human monocytes
exposed to CVB3. Both of these cytokines participate in leukocyte activation, which may
promote a specific lymphocyte response during viral infection. However, these cytokines
may also promote cardiac fibroblast activity.”” Therefore, local secretion of cytokines in the
myocardium may perpetuate the inflammatory process and lead to the fibrosis associated
with cardiomyopathy and resultant deteriorating cardiac function. Evidence also implicates
IL-1B and TNF-at as potential inhibitors of cardiac myocyte B-adrenergic responsiveness.”®
Further, TNF-o. is capable of inducing apoptosis. Transgenic mice expressing TNF-o in the
myocardium have been described.”8! Severe cardiac dysfunction indicated by biventric-
ular dysfunction and depressed ejection fraction was evident in these transgenic mice, and
the mice died prematurely. At necropsy globular dilated hearts were observed, and on histo-
logic examination there was evidence of myocyte apoptosis and severe inflammatory
infiltration of the walls of all chambers, indicative of an acute myocarditis. There was also
significant ventricular fibrosis. These data support a role for TNF-0, in the pathogenesis of
myocarditis and idiopathic DCM. The prolonged expression of inflammatory cytokines
and immunomodulators, such as TNF-a and IL-1B, has been reported in patients with

chronic myocarditis or DCM.
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Another possible effect of cytokine expression is the induction of inducible nitric oxide
synthase. Increased expression of nitric oxide synthase has been proposed to account for
some of the dilation associated with DCM?®? and has been demonstrated in a murine
CVB3-induced myocarditis model.®* In a study of a cardiac myosin-induced myocarditis
model in mice, it was shown that nitric oxide synthase expression is induced in both macro-
phages and cardiomyocytes.3* However, nitric oxide synthesis did not appear to be essential
for the development of pathologic conditions because myocarditis developed in mice lacking
interferon regulatory transcription factor-1, a transcription factor that controls expression
of inducible nitric oxide synthase. Despite the failure to synthesize nitric oxide synthase in
the myocardium, the prevalence and severity of disease in interferon regulatory transcription
factor-1-deficient animals were similar to control animals. In addition, no difference was
detected in animals lacking the interferon regulatory transcription factor-2 gene, a negative

regulator of interferon regulatory transcription factor-1-induced transcription.

CYTOSKELETON DYSFUNCTION IN DCM: THE COMMON FINAL
PATHWAY HYPOTHESIS '
In addition to the acquired form of DCM, inherited forms of the disease are described
frequently. During the past several years, clues have emerged to the underlying cause of
familial DCM, and the underlying basis for other inherited cardiovascular diseases.3>8
For instance, the basis for familial hypertrophic cardiomyopathy, a primary heart muscle
disease in which ventricular wall thickening (hypertrophy) and diastolic dysfunction
occur, has been demonstrated to be mutations in genes encoding sarcomeric proteins such
as B-myosin heavy chain, o-tropomyosin, cardiac troponin T, cardiac troponin I, myosin-
binding protein-C, cardiac actin, and the essential and regulatory myosin light chains.’
In addition, the inherited long QT syndromes have been shown to be due to mutations in
genes encoding ion channels, such as the potassium channel genes KVLQTI, KCNEI,
KCNE2, and HERG and the cardiac sodium channel gene SCN54.3% Because of the con-
sistent protein classes mutated in phenotypically similar patients (ie, sarcomeric proteins in
familial hypertrophic cardiomyopathy; ion channels in long QT syndromes), we hypothe-
sized that a common final pathway is disturbed in individual cardiovascular disorders and
that similar protein types would also be mutated in DCM.#-8¢

Currently, only 5 genes have been identified and characterized in cases of familial
DCM. In Barth syndrome, the gene G4.5, which encodes a novel protein family called
taffazins, is mutated.®’ Although well characterized at the molecular level, the function
of the encoded protein is not known. In contrast, dystrophin is the gene responsible for
X-linked DCM and is well defined.”®*? This gene, which also causes Duchenne and Becker
muscular dystrophy when mutated, encodes a large (427 kDa) cytoskeletal protein that

resides at the inner face of the sarcolemma (Fig. 23-5; see color plate 43),%? colocalizing
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with B-spectrin and vinculin. Dystrophin protein is thought to assume a rod-shaped struc-
ture with an actin-binding domain at the amino terminus. The carboxy-terminal domain
is associated with a large transmembrane glycoprotein complex, the dystrophin-associated
glycoprotein complex, which is thought to mechanically stabilize the plasma membrane of
muscle cells (Fig. 23-5). This complex is formed by the dystroglycan subcomplex (0-dystro-
glycan and B-dystroglycan), sarcoglycan subcomplex (at-, B-, y-, and d-sarcoglycan),
caveolin-3, neuronal nitric oxide synthase, syntrophin, o-dystrobrevin, and sarcospan and
serves as a link among cytoplasmic actin, the membrane, and the extracellular matrix of
muscle (Fig. 23-5). Mutations in dystrophin or dystrophin-associated glycoprotein complex
subcomplexes result in a wide spectrum of skeletal myopathy or cardiomyopathy (or both)
in humans and animal models such as the mouse or hamster, %412

The third mutant gene thus far identified, cardiac actin, has been identified as the
gene responsible for 15q14-linked autosomal dominant familial DCM.%% Tt has also been
shown to cause familial hypertrophic cardiomyopathy.'® This mutant gene appears to
cause 2 DCM phenotype when mutated near the dystrophin-binding domain, whereas
mutations that result in disruption of the protein at its interaction with the sarcomere
result in familial hypertrophic cardiomyopathy. The actin-dystrophin link, when disrupted,
dissociates the actin cytoskeleton from the muscle membrane and extracellular matrix,
leading to cellular degeneration and necrosis and 2 DCM phenotype. Disruption of the
sarcomere instead leads to familial hypertrophic cardiomyopathy.

The other 2 genes identified in familial DCM include desmin (2935)' and lamin A/IC
(1p1-1q21),'% both of which are thought to cause abnormalities of structural support
when mutated. Desmin is a component of the intermediate filaments while lamin AC
makes up part of the inner nuclear envelope (Fig. 23-5). Interestingly, these genes are
associated with skeletal myopathy and, in some cases, with conduction system disease. %7107
We®>86 hypothesized that DCM is a disease of the cytoarchitecture—the cytoskeleton and
dystrophin-associated glycoprotein complex in particular.

Other supportive data for this hypothesis exist. Maeda et al.''® identified absence of
the metavinculin transcript in the cardiac tissue from a patient with idiopathic DCM and
confirmed the metavinculin abnormality by immunoblot, which demonstrated the absence
of metavinculin protein in the heart. Metavinculin has a role in attaching the sarcomere to
the cardiomyocyte membrane by complexing with nonsarcomeric actin microfilaments
complexed with other cytoskeletal proteins (talin, 0i-actinin, vinculin), which are linked to
cadherin or to the integrin receptor. Arber et al.** showed that deficiency of muscle LIM
protein in a mouse model results in DCM, heart failure, and disruption of cardiac myocyte
cytoskeletal architecture. Muscle LIM protein is a structural protein that appears to link the
actin cytoskeleton to the contractile apparatus and, although no mutations have been
identified in humans, fits well with the Common Final Pathway hypothesis for DCM.
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Fig. 23-5. Schematic representation of the cytoarchitecture of the cardiomyocyte, including components of
the cytoskeleton, intermediate filaments, nuclear envelope, and dystrophin-associated glycoprotein complex.
MLP, muscle LIM protein; nIVOS, neuronal nitric oxide synthase. See color plate 43.
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It is possible that vinculin, which maps to the 10q21-q23 region, and caveolin-3, which
maps to 3p25, could be responsible for the familial DCM linked to these regions of the
human genome. 1112

Badorff et al.''? reported that the CVB3-encoded 2A protease cleaves dystrophin in
cultured myocytes and in infected mouse hearts. This leads to disruption of dystrophin and
the dystrophin-associated glycoprotein complex. Thus, it appears likely that one of the
effects of the infection of the heart by the enteroviruses is the disruption of the sarcolemma.
In addition, both TNF-o and IL-1PB activate the GTPase Cdc42. 114115 Constitutively
active forms of this protein induce actin polymerization. "¢ Thus, continuous stimu-
lation of this signaling pathway could affect the integrity of the cytoskeleton. Whether
viruses act directly on the cytoarchitecture or indirectly through inflammatory mediators,
it appears that the Common Final Pathway hypothesis may be relevant to the pathogenesis
of acquired and inherited forms of DCM in children and adults.

NOVEL THERAPEUTICS

Conventional treatments for myocarditis include bed rest, diuretics, digitalis, angiotensin-
converting enzyme inhibitors, B-adrenergic blockade, and antiarrhythmic medication.
Because of the idea that myocarditis involves, at least in part, autoreactive immunologic
damage, trials of immunosuppressive agents have been undertaken. The results have varied.
For example, in one multicenter myocarditis trial, patients were studied during the acute
phase of discase and no difference was observed between patients receiving immunosup-
pressive or conventional therapy.''” However, studies in patients with chronic myocarditis
suggest that immunosuppression may be efficacious in these patients,''® with significant
improvement in ejection fraction and New York Heart Association classification.

Intravenous administration of immunoglobulin has been used for the treatment of
autoimmune diseases, 17121 including Kawasaki disease. Trials of intravenously adminis-
tered immunoglobulin in acute myocarditis patients suggested that this treatment may
improve left ventricular function, with patients experiencing better survival during the
first year than the control group.'?? Further, in the CVB3-induced myocarditis model in
the mouse, intravenously administered immunoglobulin therapy during the acute phase
resulted in reduced inflammation and improved survival.'?® The successful treatment was
reported of a patient with adenovirus-induced myocarditis with high-dose intravenously
administered immunoglobulin.'”® However, a randomized trial of intravenously adminis-
tered immunoglobulin for DCM in adults failed to demonstrate benefit. 24

The observation that some patients succumb to idiopathic DCM, long after the healing

of myocarditis, but with evidence that viral sequences persist in the myocardium, suggests
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that other approaches may be beneficial for the treatment of this condition. Most antiviral
therapies (eg, ganciclovir or zidovudine) rely on viral replication to be effective. In chronic
myocarditis or idiopathic DCM, it is not obvious that viral replication is occurring or
directly responsible for the pathogenic changes.

The possible role of CVB-encoded protease in the development of a pathologic cardiac
condition by cleavage of dystrophin raises the possibility of an alternative approach to
treating viral heart disease. Virus-specific protease inhibitors have been widely used for
the treatment of HIV infection with considerable efficacy.'?'*® Enterovirus-specific
protease inhibitors have been described, including one for poliovirus 2A and one for
rhinovirus 3C.'#128

The identification of specific agents as causes of these conditions suggests that
approaches directed toward the protection of humans from these viruses would be beneficial.

The highly efficacious poliovirus vaccines'®

that have almost eliminated poliomyelitis
suggest that the development of coxsackievirus B-specific vaccines is possible."*® Support
for such an approach comes from studies of endocardial fibroelastosis (EFE).

EFE is characterized by a diffuse thickening of the left ventricular endocardium. This
results from proliferation of fibrous and elastic tissue and leads to decreased compliance and
impaired diastolic function. Most patients have a dilated left ventricular chamber (dilated
form), although some display ventricular hypoplasia. EFE usually occurs in infants and
young children, who present with signs of congestive heart failure, and most cases are of
unknown etiology. In the past, the incidence of EFE in the United States was relatively
high—approximately 1 per 5,000 live births. In recent decades, however, the incidence has
declined significantly for unknown reasons.

It was suggested that idiopathic cases of EFE result from increased endocardial mural
tension produced by the left ventricular dilatation due to myocarditis.'*! Hutchins and
Vie'! studied 64 children with either myocarditis or primary EFE; of these, 5 had
myocarditis only, 18 had idiopathic EFE, and the remaining 41 had evidence of both
myocarditis and EFE. With longer survival, the severity of myocarditis decreased but was
replaced by an increase in EFE. By 4 months, no patient had histologic evidence of
myocarditis, which is reminiscent of the association between myocarditis and DCM.

The link between viral myocarditis and EFE, therefore, supported a role for chronic
viral infection in the etiology of EFE."*! However, as with myocarditis, there was little
direct evidence for viral infection of the myocardium of patients with EFE by classical

virologic techniques. Fruhling et al.!??

reported that a significant proportion of myocardial
samples from EFE patients was culture-positive for coxsackievirus B. It also was proposed
that EFE might develop in a particular subset of patients with viral myocarditis—those with
mumps virus-induced disease. A link between mumps virus infection and EFE was estab-

lished by positive skin reactivity tests.'®® In 1 case, the mother had a mumps infection
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during the first trimester of pregnancy, whereas 2 other patients were exposed to mumps.
It was suggested that intrauterine infection with the mumps virus may be involved in some
cases of EFE.

It was first suggested in 1918 that myocarditis was a rare complication of mumps virus
infection.** In 1984 a link was established among mumps, myocarditis, and subsequent
cardiomyopathy.!?

Ni et al."® identified mumps RNA by reverse transcription PCR in more than 70%
of EFE samples, whereas 28% amplified adenovirus. These data support an etiologic role
for viral infection in EFE and the hypothesis that EFE is a sequela of a viral myocarditis,
particularly due to mumps virus. None of the samples obtained after 1980 were positive
for mumps virus. Thus, it is possible that the remaining cases of EFE are caused by a dif-
ferent etiologic agent, such as adenovirus.

A mumps virus origin for EFE may also explain the dramatic decline in incidence in
the last few decades. Since the introduction of the mumps vaccine, the prevalence of epi-
demic parotitis has decreased significantly.'”” Therefore, unlike the pattern of infection of
the enteroviruses, which show periodic peaks in infection rates, the decline in incidence of
EFE seems to reflect the decreased prevalence of mumps virus in the population. These
data support the efficacy of a virus-specific vaccination (eg, adenovirus group C and CVB)
in the prevention of an acquired form of heart disease.

Adenovirus-specific vaccines are already available for some serotypes, and the vaccine
is provided for military personnel in the United States. However, this vaccine does not protect
against the group C adenoviruses most commonly associated with heart disease. No data
are available on the difference in the frequency of myocarditis in these individuals versus the

general population.

THE COMMON COXSACKIEVIRUS B-ADENOVIRUS RECEPTOR

It has remained something of a conundrum why 2 such divergent virus families as the human
adenoviruses and coxackievirus B cause these diseases. The description of the common
human coxsackievirus B-adenovirus receptor (CAR) offers at least a partial explanation, 38140

CAR is a 46-kDa transmembrane glycoprotein with 2 extracellular immunoglobulin-
like domains. Transfection of nonpermissive cells with a cDNA clone encoding this
receptor allows both coxsackievirus B and adenovirus (through the fiber protein) attach-
ment and infection.'®® In humans, this protein is expressed highly in the heart, pancreas,
testes, and prostate and to some degree in many other tissues.'® The human CAR gene
consisting of 7 exons is encoded at 21q11.2,"! and pseudogenes are located on chromo-

somes 15, 18, and 21.

578



Chapter 23: Childhood Myocarditis and Dilated Cardiomyopathy

It has been postulated that the physiologic function of CAR is as a cellular adhesion
molecule, which in the developing brain is important in neural network formation.'4?
However, the broad spectrum of tissues encoding this protein suggests that its function is
more general in cell-to-cell contact and cardiomyocyte adhesion.

CAR is not limited to humans and mice. Iro et al.'¥?

reported that it is strongly
expressed in the myocardium of newborn rats. Although in adult rats myocardial expres-
sion is reduced, in a rat model of myocarditis induced by immunization with cardiac myosin,
CAR expression is enhanced during the active phase due to induction by inflammatory
mediators. It is unknown whether such a phenomenon occurs in humans, but the increased
expression of CAR should be considered as a host factor in the pathogenesis of viral
myocarditis and DCM.

Adenovirus uses a second receptor for cell entry, the vitronectin receptor (05 integrin
and P; integrin). Although the interactions of CAR with components of the cytoskeleton
are not yet identified, the vitronectin receptor interacts with vinculin and actin!*4!%4
(Fig. 23-5). Whether disturbances in these interactions contribute to the susceptibility or

pathogenesis of myocarditis or DCM is under investigation.
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