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In the past decade there has been a growing interest in understanding sex

and gender differences in myocarditis and dilated cardiomyopathy (DCM),

and the purpose of this review is to provide an update on this topic

including epidemiology, pathogenesis and clinical presentation, diagnosis and

management. Recently, many clinical studies have been conducted examining

sex differences in myocarditis. Studies consistently report that myocarditis occurs

more often in men than women with a sex ratio ranging from 1:2–4 female

to male. Studies reveal that DCM also has a sex ratio of around 1:3 women to

men and this is also true for familial/genetic forms of DCM. Animal models have

demonstrated that DCM develops after myocarditis in susceptible mouse strains

and evidence exists for this progress clinically as well. A consistent finding is

that myocarditis occurs primarily in men under 50 years of age, but in women

after age 50 or post-menopause. In contrast, DCM typically occurs after age 50,

although the age that post-myocarditis DCM occurs has not been investigated.

In a small study, more men with myocarditis presented with symptoms of chest

pain while women presented with dyspnea. Men with myocarditis have been

found to have higher levels of heart failure biomarkers soluble ST2, creatine

kinase, myoglobin and T helper 17-associated cytokines while women develop

a better regulatory immune response. Studies of the pathogenesis of disease

have found that Toll-like receptor (TLR)2 and TLR4 signaling pathways play a

central role in increasing inflammation during myocarditis and in promoting

remodeling and fibrosis that leads to DCM, and all of these pathways are

elevated in males. Management of myocarditis follows heart failure guidelines

and there are currently no disease-specific therapies. Research on standard heart

failure medications reveal important sex differences. Overall, many advances

in our understanding of the effect of biologic sex on myocarditis and DCM

have occurred over the past decade, but many gaps in our understanding

remain. A better understanding of sex and gender effects are needed to develop

disease-targeted and individualized medicine approaches in the future.
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1. Introduction

Men have an increased incidence of most cardiovascular
diseases (CVDs) including atherosclerosis, myocardial infarction,
myocarditis, dilated cardiomyopathy (DCM) and heart failure (1,
2). In 2013 we reviewed the topic of sex differences in myocarditis
and DCM (3). At that time the National Institutes of Health
(NIH) had not updated its guidance for the inclusion of sex as
a biological variable (SABV) in study design, data analysis and
reporting of findings for NIH supported studies (4–6), and few
studies in the literature focused on the topic. In that review, we
called for greater translational research efforts in understanding
the pathogenesis of sex differences in myocarditis and expressed
the need to develop multicenter biobanks that could link specific
phenotypes of samples with a special focus on including both
sexes (3). Nearly a decade later, there is a growing interest in
understanding sex and gender differences in myocarditis and DCM
with many publications on the topic. However, many of the same
needs still exist, as described in the Executive Summary from
the 2022 National Heart, Lung and Blood Institute (NHLBI) of
NIH workshop on sex and gender outcomes related to COVID-
19 (7). The focus of this review is to provide an update on sex
and gender differences in myocarditis and DCM including recent
information on the epidemiology, pathogenesis of disease, and
clinical presentation, diagnosis and management.

Abbreviations: CVD, cardiovascular disease(s); ACE, angiotensin converting
enzyme; ACEI, angiotensin converting enzyme inhibitor; AHA, American
Heart Association; aHTN, arterial hypertension; AR, androgen receptor(s);
ARB, angiotensin receptor blocker(s); ARNI, angiotensin receptor-neprilysin
inhibition; BTT, bridge to transplant; CAD, coronary artery disease; cMRI,
cardiac magnetic resonance imaging; CR, complement receptor; CRP,
C-reactive protein; CRT-D, cardiac resynchronization therapy-defibrillator;
CVB3, coxsackievirus B3; DAPA-HF, Dapagliflozin and Prevention of
Adverse Outcomes in Heart Failure; DCM, dilated cardiomyopathy; DSP,
desmoplakin; E2, 17β-estradiol; EMB, endomyocardial biopsy; EMPA-REG,
Empagliflozin Cardiovascular Outcome Event Trial in Type 2 Diabetes
Mellitus; ER, estrogen receptor(s); ESC, European Society of Cardiology;
FLNC, filamin C; GBD, Global Burden of Disease; HEAAL, effects of
high-dose versus low-dose Losartan on Clinical Outcomes in Patients
with Heart Failure study; HFmEF, heart failure with mid-range ejection
fraction; HFpEF, heart failure with preserved ejection fraction; HFrEF, heart
failure with reduced ejection fraction; hsTpnT, high-sensitivity troponin
T; ICD, implantable cardiac defibrillator; IFN, interferon; IL, interleukin;
IL1R1, interleukin-1 receptor-like 1; IMAC-2, Intervention in Myocarditis
and Acute Cardiomyopathy-2; iNOS, inducible nitric oxide synthase; ISFC,
International Society and Federation of Cardiology; LLC, Lake Louise
criteria; LMNA/C, lamin A/C; LVAD, left ventricular assist devices; LVEF, left
ventricular ejection fraction; MOMENTUM 3, Multicenter Study of MagLev
Technology in Patients Undergoing Mechanical Circulatory Support Therapy
with HeartMate 3; MYBPC3, myosin binding protein 3; NHLBI, National Heart,
Lung and Blood Institute; NIH, National Institutes of Health; NT-proBNP,
N-terminal-pro hormone-probrain natriuretic peptide; NYHA, New York
Heart Association; PARADIGM-HF, Global Mortality and Morbidity in Heart
Failure; PARAGON-HF, Prospective Comparison of ARNI with ARB Global
Outcomes in Heart Failure with Preserved Ejection Fraction; PLN, cardiac
phospholamban; PROVE-HF, Prospective Study of Biomarkers, Symptom
Improvement and Ventricular Remodeling During Entresto Therapy for
Heart Failure; RAAS, renin-angiotensin-aldosterone-system; RMB20, RNA
binding protein 20; SABV, sex as a biological variable; SCD, sudden cardiac
death; SGLT2i, sodium-glucose cotransporter-2 inhibitors; sST2, soluble
ST2; Th, T helper; Tim, T cell immunoglobulin mucin; TLR, Toll-like receptor;
TNF, tumor necrosis factor; TnT-hs, high sensitivity troponin T; TOPCAT,
Treatment of Preserved Cardiac Function Heart Failure With an Aldosterone
Antagonist; Treg, regulatory T cells; TTN, titin; TTNtv, titin truncating variants;
UMBRELLA, Incidence of Arrhythmia in Spanish Population With a Medtronic
Implantable Cardiac Defibrillator Implant; UNOS, United Network for Organ
Sharing; WHO, World Health Organization.

2. Definitions

First, sex and gender are not interchangeable terms. Sex refers
to biological differences attributed to chromosomes, hormones,
reproductive anatomy, gene expression, etc., and typically refers
to a binary of male or female but can include intersex (5, 8, 9).
Gender, on the other hand, is a social construct that is rooted in
biology but affected by environment and experience. Gender is not
a binary, but a broad spectrum where individuals may identify as
cis or transgender, non-binary, gender-neutral, or in other ways
as they define their own gender (8, 10, 11). Biological sex does
not change over time, but gender varies in different cultures and
with time. This review summarizes data from studies over the past
decade which focused on cis-gendered populations, but few if any
studies have examined the role of gender on myocarditis or DCM.
Although we do not specifically report data on gender differences in
this review of myocarditis and DCM because the research has not
yet been conducted (i.e., studies designed to understand the effect
of gender on disease outcomes), it is important in a discussion of
sex differences to understand that there are also environmental and
social interactions (gender differences) that affect sex differences
outcomes both for animal studies and human data.

Myocarditis is defined by the World Health Organization
(WHO) and the International Society and Federation of Cardiology
(ISFC) as myocardial inflammation (12) that can cause loss of heart
function including sudden cardiac death (13, 14), heart failure,
and/or DCM (15, 16). Myocarditis encompasses a number of
subtypes including lymphocytic myocarditis, the most common
form of myocarditis and the main topic of this review, fulminant
myocarditis, giant cell myocarditis, eosinophilic myocarditis and
autoimmune myocarditis. These types are not necessarily distinct
from each other–lymphocytic myocarditis can be autoimmune and
giant cell and eosinophilic myocarditis are often indistinguishable
clinically. Regarding some classifications, the presence of necrosis
(12, 17–19) and/or viral genome (19) is required for a definitive
myocarditis or viral myocarditis diagnosis. Scientific statements
and position statements differ with respect to the diagnostic
certainty of cardiac magnetic resonance imaging (cMRI) for
myocarditis. Histologic confirmation by endomyocardial biopsy
(EMB) or surgical tissue analysis is required for a definite diagnosis
of myocarditis based on the European Society of Cardiology
Working Group on Myocardial and Pericardial Diseases position
statement (19, 20). In contrast, cMRI is considered sufficient for a
definite diagnosis of myocarditis according to the American Heart
Association (AHA) scientific statement and the Brighton Criteria
for vaccine-associated myocarditis (21, 22). Endomyocardial
biopsies are not common practice in the United States, and the
AHA statement recommends viral genome analysis only in cases
of diagnostic uncertainty where the biopsy findings will directly
influence treatment such as in suspected giant cell myocarditis or
sarcoidosis (23). In 2018, native T1 and T2 weighted parametric
mapping by cMRI were added to a modified 2009 Lake Louise
criteria (LLC) for the diagnosis of myocarditis (24).

Dilated cardiomyopathy is a morphological disease classified
by dilation of the ventricle(s) and/or impairment of contractional
function (25) in the absence of other cardiac disease, including
coronary artery disease (CAD), hypertension, or congenital heart
disease (26–28). The WHO definition of DCM adds that these
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characteristics that disrupt the form and function of the heart
may lead to other serious conditions including arrhythmia or
heart failure (12, 22). DCM is further classified as either genetic
or non-genetic, with environmental factors contributing to the
pathogenesis of disease (29–31). The functional impairment that
is characteristic of DCM is progressive–as the dilated heart pumps
harder to keep up with systolic demand this increases strain which
increases dilation, so that the long term consequence is heart
failure (16). Much like myocarditis, DCM can have a number of
causes that lead to cardiac damage, remodeling, and progression
to DCM (32). Myocardial inflammation can initiate remodeling
pathways that replace the damaged myocardium with fibrosis that
over time leads to dilatation, which has been demonstrated in viral
and autoimmune animal models of myocarditis; thus, myocarditis
is regarded as a significant cause of DCM (33). If DCM is not
found to have a genetic or any other clearly identifiable cause it
is termed idiopathic DCM, with this group constituting the largest
category of DCM (34). Aside from animal models, several clinical
studies have shown that myocarditis can progress to DCM, which
is sometimes referred to as inflammatory DCM although the term
inflammatory cardiomyopathy is sometimes also used to refer to
acute myocarditis (35–38). It is quite possible that all types of DCM
have myocardial inflammation that are recruited to the heart if for
no other reason than to heal fibrotic scar tissue, which is observed
in animal models of myocarditis that progress to DCM (35, 36,
39–41). However, biopsies are rarely performed in patients with
DCM to confirm the presence of inflammation. Additionally, there
have been studies of idiopathic DCM that find evidence of viruses
and cardiac inflammation suggesting the possibility that DCM may
have progressed from myocarditis (42).

As heart failure is an important clinical outcome of both
myocarditis and DCM, it warrants definition. Heart failure results
from the inability of the heart to meet the metabolic needs of
the body at normal pressures (43). Heart failure is a spectrum
currently classified by clinical and functional measures that can
occur suddenly resulting in sudden cardiac death or gradually
develop as occurs when myocarditis progresses to DCM, which
is often termed chronic heart failure. Myocarditis is an important
cause of sudden cardiac death, particularly if highly exertional
exercise occurs about a week after symptoms of a viral infection
(44, 45). Typically, patients have no signs or symptoms of heart
concerns prior to exercise. New York Heart Association (NYHA)
class categorizes the severity of heart failure based on clinical
cardiovascular fitness. Cardiac systolic function is also stratified
into three categories of left ventricular ejection fraction (LVEF)
(46): heart failure with reduced ejection fraction (HFrEF) (LVEF
<40%), heart failure with middle range ejection fraction (HFmEF),
and heart failure with preserved ejection fraction (HFpEF) (LVEF
>49%) (46). This developing terminology indicates the limitations
in diagnosing heart failure in the cardiovascular field.

3. Sex differences in epidemiology

Historically the epidemiology of myocarditis has been based
mainly on small, single-center studies. The latest Global Burden of
Disease (GBD) statistics place the prevalence of myocarditis and
cardiomyopathy worldwide at 10.2 to 105.6 per 100,000 (47, 48),
with an annual occurrence estimated at around 1.8 million cases

(47). One recent study in Sweden reported that the incidence of
myocarditis rose from 6.3 to 8.6 per 100,000 from 2000 to 2014 (49).
In 2019, GBD statistics reported a mortality rate in patients with
myocarditis aged 35–39 of 4.4 per 100,000 in women and 6.1 per
100,000 in men, indicating that more men die of myocarditis than
women worldwide (47). Past studies examining sex differences in
patients with myocarditis reported only a slightly higher prevalence
of myocarditis in males than females (sex ratio female to male of
1:1.5 to 1:1.7) (50–52). In the past decade many clinical studies
have been conducted examining sex differences in myocarditis.
Studies consistently report that myocarditis occurs more often in
men than women with a sex ratio ranging from 1:2–4 female to
male (Table 1). Additionally, studies have found that myocarditis
occurs more often in men under 50 years of age but in women after
age 50 or post-menopause (25, 53–58). Several large studies found
that myocarditis was most prevalent in young adult males aged
16–20 (53, 58), but one study of sudden cardiac death corroborated
from autopsy in 42 cases reported that myocarditis occurred most
often in males aged 36–45 years (Table 1) (56). Thus, overall
myocarditis occurs most often in young men under age 50 who have
higher biomarker levels (e.g., troponin, sST2) and worse outcomes,
including mortality, compared to women (Table 1). Myocarditis
occurs most often in women after menopause, and a recent
study found that women with autoimmune myocarditis (confirmed
presence of heart autoantibodies and anti-nuclear autoantibodies)
had worse outcomes compared to men (Table 1) (59).

Clinical and animal studies have demonstrated that myocarditis
can progress to DCM (37–40, 60, 61). DCM has an estimated
prevalence of 1 in 250 to 500 people (62) and the incidence has
increased over the past decade (47). The worldwide prevalence of
cardiomyopathy/DCM is higher in men and increases with age
(47). Women have been reported to have better long-term survival
from DCM following myocarditis, with more men requiring heart
transplants (37, 43). We recently reviewed sex differences in DCM
and reported an average overall 1:2.5 female to male sex ratio in a
meta-analysis of 31 studies from a search of around 1,200 studies in
the literature (32). Of the 31 studies reported in the study, most did
not analyze data by sex. The overall sex ratio from the meta-analysis
was similar to the population-based study of DCM conducted
in Olmsted County, Minnesota in 1989, using the Rochester
Epidemiology Project, which reported an age-adjusted sex ratio for
both incidence and prevalence of 1:3 female to male (63). Similar
to myocarditis, recent studies examining sex differences in DCM
report that DCM occurs more often in men (60–77%) and that men
have lower LVEF, worse outcomes, and higher mortality compared
to women (Table 2). However, in contrast to myocarditis, DCM
occurs more often after age 60 in both men and women (Table 2).
However, the age that DCM occurs post-myocarditis has not been
specifically examined.

4. Sex differences in genetics

4.1. Sex differences in genetic
myocarditis

Until recently there were almost no reports of genetic
associations with myocarditis; however, a number of sporadic cases
of genetic associations of myocarditis emerged in the literature in
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TABLE 1 Studies of sex differences in myocarditis in the past decade.

Year Country n Sex ratio (F:M) Main findings References

2013 Finland 3,198 1:3.3 *Myocarditis more common in men than women (77% men)
(p < 0.0001)
*Median age of patients 33 years
*Males were significantly younger than females (p < 0.0001)
*Myocarditis most prevalent in men 16–20 years of age with a gradual decline with
age thereafter
*Women highest level after menopause
*Hospital admissions inverse logarithmic association with age

(53)

2017 Israel 200 1:2.6 *More men had myocarditis than women (76% men)
*Men had higher peak troponin levels (p < 0.001)
*Men were significantly younger than women (p < 0.001)
*More men were hospitalized (p = 0.015)
*Women had more chronic medical conditions

(54)

2019 Many countries 303 1:3.5 *More men had myocarditis (78%)
*sST2, a biomarker of heart failure, was increased in men with myocarditis <50 years
of age
*sST2 levels correlated with NYHA class heart failure in men but not in women

(55)

2019 Denmark 42 1:2.2 *More men were found to have myocarditis at autopsy for SCD (69% men) (p = 0.02)
*SCD was higher in males for all ages from 16 to 45
*Highest SCD-myocarditis incidence from autopsy observed in those aged
36–45 years

(56)

2019 USA 27,129 1:2 *More men were hospitalized for myocarditis (66% vs. 34%)
*Hospitalized men were younger than women (p < 0.001)
*In hospital complications (6.5% vs. 2.5%) and mortality (3.5% vs. 1.8%) were higher
in women (p < 0.001)

(254)

2020 Switzerland 51 1:4.1 *More men had myocarditis than women (82%)
*Sex differences in symptoms: men chest pain, women dyspnea
*Myoglobin and creatine kinase higher in men (p = 0.04, p = 0.004, respectively)

(162)

2020 New Zealand 178 1:2.5 *More men had myocarditis (71% men)
*Men were younger than women (36 vs. 53 years, p < 0.001)
*ST-elevation on electrocardiogram more often in men (p = 0.01)

(57)

2021 Poland 19,978 1:2.9 *More men were hospitalized with suspected myocarditis than women (74%)
*Myocarditis occurred more often in patients 16–20 years of age
*The proportion of males were higher in all age groups except patients >70 years of
age
*In the last 10 years, the incidence of myocarditis increased, especially in males

(58)

2022 South Africa 82 1:1.9 *More men had myocarditis (66%) (255)

2022 Sweden 8,679 1:3 *Incidence rose from 6.3 to 8.6 per 100,000 from 2000 to 2014, mostly in men
<50 years of age

(49)

2022 Italy 466 1:2.1 *More men had myocarditis (68%)
*Lower LVEF predicted worse outcomes
*Women with autoimmune anti-heart antibodies and/or antinuclear antibodies had
worse outcomes (11% reported another autoimmune disease besides myocarditis and
12% had giant cell and/or eosinophilic myocarditis- forms thought to occur more
often in women)

(59)

F, female; LVEF, left ventricle ejection fraction; M, male; n, number; NYHA, New York Heart Association; SCD, sudden cardiac death; sST2, soluble ST2; USA, United States of America.

recent years (64–72). Recurrent cases of myocarditis and patients
presenting with ventricular arrhythmia most strongly suggest
genetics could be a factor, especially in children (73–76). This was
confirmed in adults in a recent international study of 23 hospitals
that compared 36 patients with myocarditis with desmosomal gene
variants to those with myocarditis without variants. The study
found that patients with variants were at increased risk of recurrent
myocarditis and ventricular arrhythmias, and that more women
were affected than men (p = 0.01) (75). Another recent study

performed next generation DNA sequencing on 36 patients with
biopsy-confirmed myocarditis and found that 31% had evidence
of genetic variants that have been associated with cardiomyopathy
including Titin (TTN) (n = 8), Desmoplakin (DSP) (n = 1), Filamin
C (FLNC) (n = 1) and RNA binding protein 20 (RBM20) (n = 1)
(77). A large study performed genetic sequencing on patients
with myocarditis from three different registries and identified that
19 of 117 patients (16%) had a genetic variant associated with
cardiomyopathy or neuromuscular disorders compared to 34 of
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TABLE 2 Studies of sex differences in DCM in the past decade.

Year Country n Sex ratio (F:M) Main findings References

2011 USA 373 1:1.7 *More men developed DCM after myocarditis (62%)
*Men had a worse outcome than women

(37)

2013 Western Europe 269 1:1.2 *Men had worse cardiac function with LVEF <45% (p < 0.001)
*Arrhythmias and end-stage heart failure occurred more often in men (p < 0.001,
p = 0.006, respectively)
*Mortality higher in men than women

(256)

2013 China 288 1:1.9 *Men had association between polymorphism in IL-17 rs763780 and increased DCM
risk

(173)

2014 Germany 140 1:3.4 *More men had DCM (77%)
*Increased mortality in women with congestive heart failure (p = 0.001) and RVEF
<38% (p = 0.006) (average age 59± 13)

(257)

2015 China 1,142 1:2.7 *More men developed DCM (73%)
*Increased risk of mortality in men past 60 years of age with DCM compared to
young men, but not for elderly women

(258)

2018 UK 881 1:2 *More men developed DCM (67%)
*Men had lower LVEF (p = 0.019)
*All-cause mortality higher in men than women
*All-cause mortality increases with age, especially in men after 60 years of age

(259)

2019 Kathmandu 65 1:1.6 *More males developed DCM (61%)
*DCM occurred more often past age 60

(260)

DCM, dilated cardiomyopathy; F, female; LVEF, left ventricle ejection fraction; M, male; n, number; NYHA, New York Heart Association; RVEF, right ventricle ejection fraction;
sST2, soluble ST2.

468 controls (7%, p = 0.003) (78). Pediatric cases with variants
occurred more often in females, but in adults with myocarditis
variants were found more often in males (78). TTN mutations
were the most commonly found mutations in this study, occurring
in 6 out of 8 males. The recent consensus statement for genetic
testing in patients with inherited CVD does not recommend
genetic testing in patients with myocarditis (79), but evidence
may be lacking simply because researchers have not looked for
the relationship before now. These recent studies suggest that it
may be warranted. Why would myocarditis that is associated with
genetic variants display sex differences? One possible explanation
is that physical damage to the heart that occurs from genetic causes
(i.e., pathogenic variants in titin) could be aggravated by secondary
factors such as damage from toxins (i.e., chemotherapy agents like
doxorubicin), autoimmunity (i.e., immune complex deposition)
and/or infections (i.e., coxsackievirus) leading to inflammation that
is sex-specific (32). Thus, the genetic issue may remain functionally
and/or symptomatically “hidden” until a second “hit” occurs that
may drive inflammation and cardiomyopathy (32).

4.2. Sex differences in genetic DCM

Dilated cardiomyopathy is inherited in about 30–40% of
all cases, which has been reviewed extensively previously (34,
62, 80–82). Most familial DCM has an autosomal dominant
inheritance pattern, which is expected to affect men and women
equally. However, other inheritance patterns have been identified,
including autosomal recessive, X-linked, and mitochondrial, where
X-linked and mitochondrial DCM occur more often in women
(83). Importantly, large scale genome-wide association studies
that examined the risk associated with particular genetic profiles
have found significant sex differences, indicating the importance

of analyzing genetic data by sex (84). The most common genes
associated with cardiomyopathy/DCM are listed in Table 3 in
descending order [see also (32)]. However, more than 40 nuclear
encoded or mitochondrial genes have been associated with DCM
and fall into four major categories: proteins forming the myocyte
cytoskeleton, sarcomeric proteins, nuclear envelope proteins, and
calcium homeostasis/mitochondrial function regulators (82).

As shown in Table 3, familial DCM typically occurs more
often in males, with a reported female to male sex ratio of 1:2–3
(32, 43, 85, 86). Titin truncating variants (TTNtv) show higher
penetrance and younger age at presentation in men, who have
higher rates of atrial fibrillation and worse cardiac function than
women with these variants (82, 87). TTNtv women are at increased
risk of developing peripartum cardiomyopathy, suggesting a role
for sex hormones in influencing gene expression (88). Women
with Lamin A/C (LMNA) DCM were found to have 45% less
risk for life-threatening arrhythmia than men (89). Male LMNA
mutation carriers present clinical manifestations at a younger age
than females (90). Twelve studies that provided data on the sex
distribution of LMNA variants in DCM patients and 6 similar
studies on Myosin binding protein 3 (MYBPC3) variants found
that 98 out of 152 patients with LMNA variants (69%) and 60 out
of 76 patients with MYBPC3 variants (79%) were male (82). In
contrast, the male proportion was significantly lower in cardiac
Phospholamban (PLN) mutation carriers with DCM (46%). PLN
was the only mutation examined with a female to male ratio >1
(54% female) (82). In one multicenter study, there was a trend
toward a lower risk of major cardiovascular events in women who
had Filamin C (FLNC) genetic variants (91). Males with pathogenic
variants in the gene for RBM20 were both significantly younger and
had lower ejection fraction at diagnosis than females (p < 0.01)
(92). Additionally, 35% of affected males (n = 11 of 31) needed
a cardiac transplant while none of the affected females (n = 22)
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TABLE 3 Sex differences in the most common familial DCM-linked genes in descending order.

Sex difference Gene type Gene Protein Function References

↑♂ sarcomere TTN/TTNtv Titin sarcomere structure

↑♂ Arrhythmia non-sarcomere LMNA/C Lamin A/C nuclear membrane envelope (82, 86, 90)

↑♂ Arrhythmia sarcomere MYH7 α-Myosin heavy chain sarcomere structure

Unknown sarcomere MYH6 β-Myosin heavy chain sarcomere structure

↑♂ BAG3 BAG family molecular
chaperone regulator 3

chaperone-assisted selective
autophagy

(161)

Unknown sarcomere MYPN Myopalladin Z-disc of sarcomere

↑ ♀ DSP Desmoplakin desmosome (86)

↑♂ Cardiac events sarcomere FLNC Filamin C Z-disc of sarcomere

♂ Affected younger and ↑
severity

non-sarcomere RMB20 RNA binding protein 20 spliceosome (92, 261)

No sex difference sarcomere TNNT2 Cardiac troponin T sarcomere structure (86)

Unknown non-sarcomere SCN5A Sodium channel protein 5
subunit α

ion channel

No sex difference sarcomere TNNC1 Cardiac troponin C sarcomere structure (86)

Unknown sarcomere TNNI3 Cardiac troponin I sarcomere structure

No sex difference sarcomere TMP1 Tropomyosin α1 chain sarcomere structure (86)

↑♂ sarcomere MYBPC3 Myosin binding protein 3 sarcomere structure (82)

↑ ♀ non-sarcomere PLN Cardiac phospholamban (82)

aDCM, dilated cardiomyopathy; ♀, female; ↑, increased; ♂, male.

were this severe (p < 0.001) (92). Thus, although sex differences
are found in familial DCM, many environmental factors contribute
to these differences including damage to the heart from infections
(e.g., viruses), toxins (e.g., chemotherapy, alcohol), inflammation
(e.g., viral or autoimmune myocarditis), sex differences that exist in
the basic physiology of the heart, and social factors that contribute
to gender differences.

5. Sex differences in cardiovascular
physiology

First, it is important to realize that every cell has a “sex” based
on their sex chromosomes and is impacted by sex hormones from
in utero throughout the lifespan. This results in clear differences
in cardiac physiology and gene profiles according to sex (93).
Female hearts are on average 25% smaller than male hearts with a
smaller ventricular mass and diameter, yet greater cardiomyocyte
contractility and ejection fraction (2, 94–97). The number and
size (hypertrophy) of cardiac cells differ by sex for all cell types
including cardiac myocytes and fibroblasts–which make up the
greatest mass of the heart–with 30% of men having greater
hypertrophy than women (1, 98). The sex difference in cardiac
size is most apparent during adulthood, with myocardial mass
better preserved in women as they age (2, 99, 100). Women have
smaller coronary vessels than men, (101) premenopausal women
have lower blood pressure (102, 103) but a faster resting heart
rate than men (104), and women have higher LVEF percentages
compared with men (105, 106). Hearts from men and women
respond similarly to exercise, which stimulates healthy cardiac
enlargement in both sexes, but is more pronounced in females
(1, 2).

Many of these sex-specific effects on cardiac function are
mediated by sex hormone receptors that signal using both non-
genomic (receptors expressed on the surface of cells) and classic
genomic mechanisms (107–111). It is important to realize that cells
from both men and women express both estrogen receptors (ERs)
and androgen receptors (ARs), just in differing ratios. For example,
women have higher levels of ERs in/on their arteries than men
(108). 17β-Estradiol (E2) signaling through ERs has been shown
to prevent cardiac hypertrophy, inhibit reactive oxygen species-
induced cardiac damage, prevent apoptosis in cardiac myocytes,
and oppose mechanisms that lead to cardiac remodeling and
fibrosis (Table 4) (112). The cardioprotective benefit of estrogen
in females rapidly declines during menopause (around age 50)
when older males have higher levels of circulating estrogen than
aging females (113, 114). Little data exists on the effects of
cycling hormones or hormonal changes during pregnancy on
normal cardiac physiology in women. Hormone receptors also
mediate their effects through sex hormone-dependent regulation of
miRNAs that are delivered by extracellular vesicles (109, 110, 115).
Additionally, chromosomal genotype and epigenetic regulation can
also drive sex differences (1). The role of gender on basic cardiac
function is understudied with virtually nothing in the literature.

6. Sex differences in the
pathogenesis of myocarditis and
DCM

Most of our understanding of the pathogenesis of myocarditis
and its progression to DCM comes from animal models. Several
animal models of viral myocarditis and autoimmune myocarditis
exist [reviewed in 15, 39, 116–118]. The first investigators to study
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sex differences in myocarditis were Huber and Woodruff, who
reported in 1981 that male BALB/c mice had worse myocarditis
in response to coxsackievirus B3 (CVB3) infection than females
(119). Dr. Huber continued to study sex differences in myocarditis
for her entire career, creating much of the field’s foundational
understanding of sex differences in myocarditis. Some important
findings include that males have more cardiac viral replication
than females, which can be increased in females by the addition of
testosterone (120). Male BALB/c mice with CVB3 myocarditis have
a greater T helper (Th)1 response while females have a greater Th2
response, which can be converted to a Th1 response by the addition
of testosterone (121). The predominant immune cell response in
the Huber model of CVB3 myocarditis are γδ T cells, which vary
by sex with males having more Vγ4 while females have more
Vγ1 T cells and B cells (122). Using C57BL/6J chromosome Y
consomic mice, Huber et al. showed that the Y chromosome also
influences sex differences in myocarditis, although sex hormones
mediate the largest effect (123). Genes that are expressed on the
X chromosome such as TLR7 and TLR8 have also been found to
play roles in regulating the innate immune response to infection
contributing to sex differences in certain autoimmune disease
models (124, 125). Roberts et al. reported sex differences in Toll-
like receptor (TLR)2 and TLR4 signaling in C57BL/6 mice with
CVB3 myocarditis, where there was increased expression of TLR2
in females but TLR4 in males (126, 127). And importantly, ERα was
found to protect female mice with CVB3 myocarditis by decreasing
the Th1 response while increasing regulatory T cells (Treg) while
ERβ had the opposite effect (128). However, sex differences in the
inflammatory infiltrate differ between models of viral myocarditis.
The CVB3 model used by Huber (and many other researchers)
causes widespread cardiac apoptosis/necrosis with only a low level
of cardiac inflammation (15%) while the majority (70%) of mice die
by day 7 with few surviving to develop DCM (117, 118). Using this
model, investigators recently showed that an X-linked gene Midline
1/Md1 that regulates TRIM18 expression reduces type I interferon
levels in male C57BL/6 mice in response to CVB3 infection altering
survival and myocarditis (129, 130). However, the investigators
did not examine whether this gene contributed to sex differences
in the immune response. Future studies should examine whether
X-linked genes such as Md1/TRIM18, TLR7 and TLR8 contribute
to sex differences in the immune response to viral infection and
myocarditis to better understand the role of the X chromosome in
disease pathogenesis.

Around 20 years after Dr. Huber started studying sex
differences in CVB3 myocarditis, Dr. Fairweather developed a new
model of CVB3 myocarditis based on the idea that myocarditis
was an autoimmune disease, which used a mild CVB3 infection as
the adjuvant combined with damaged heart protein as the antigen
(15, 39, 116). In this model of myocarditis, male BALB/c mice
develop worse myocarditis with a dominant immune infiltrate of
CD11b/complement receptor 3 (CR3)+ immune cells including
neutrophils, macrophages, mast cells and dendritic cells, but there
are no sex differences in cardiac viral replication (Figure 1) (40,
131, 132). There is low apoptosis and relatively high inflammation
(males average 60% vs. females 25% inflammation) and no deaths
with all (100%) male and female BALB/c mice progressing to
DCM (41). Males develop worse myocarditis and DCM and
sequencing showed that the gene changes that lead to remodeling
and fibrosis occur during acute myocarditis, and then time is all

TABLE 4 Effects of sex hormones and/or sex differences in the basic
physiology of the heart.

Effect References

E2 Increases ApoE levels (262, 263)

E2, ♀ Supports antioxidant effects/reduces
oxidative stress (decreasing oxidases, lipid
peroxidation, and superoxide anion
formation and increasing reactive oxygen
scavenging enzymes)

(41, 137, 262–266)

E2, ♀ Stimulates autophagy (137, 267, 268)

E2 Maintains cardiac energy metabolism and
protects mitochondrial function

(269)

E2 Decreases glucose utilization (270)

♀ Promotes gene expression toward heart
development

(1, 271)

♀ Smaller left ventricular end diastolic
diameter

(272)

♀ Smaller size especially pre-menopause
(mass and output) but more efficient
pump (larger contractility and ejection
fraction, more dense cardiomyocytes)

(2, 94–97)

♀ Preserves myocardial mass during aging (99, 100)

♀ Decreases coronary vessel size, lower
blood pressure, higher heart rate

(2, 273–275)

♀ Stiffer myocardial wall (2)

Te Levels higher in male hearts (276)

♂ Increases hypertrophy (98, 277, 278)

♂ Increases apoptosis (279, 280)

Te Reduces antibody/autoantibody formation
during immune response

(281–283)

Te Decreases ventricular repolarization time (284)

♂ Increases endothelial cells with overall
gene expression bias toward angiogenesis

(1, 271)

♂ Increases androgen receptor expression
on monocytes

(285–287)

♂ Increases left ventricular mass and heart
size, especially during puberty

(98, 273–275)

ApoE, Apolipoprotein E; E2, estrogen/17β-estradiol; ♀, female; ♂, male; Te, testosterone.

that is needed for collagen deposition and fibrosis to occur, with
dilatation emerging around 30 days later (41, 133). This model
is very similar to clinical lymphocytic myocarditis. Fairweather’s
model showed that the dominant innate (first minutes and hours)
and adaptive (during acute myocarditis at day 10 after infection)
immune response in males is characterized by upregulation of
complement and TLR4 on macrophages and mast cells (131,
132, 134, 135). IL-1β and IL-18 (interferon/IFNγ-inducing factor),
which are produced from TLR4 signaling, lead to a dominant Th1
and M1 response in male BALB/c mice and cooperate with enzymes
released from mast cells (i.e., α1-antichymotrypsin/serpin A 3n)
to promote remodeling (3, 41, 133, 136, 137). Surprisingly, TLR4
was found to be present on alternatively activated M2 macrophages
that resemble myeloid-derived suppressor cells with a profibrotic
M2b phenotype in males, whereas females developed classic M2a
macrophages with regulatory receptors like T cell immunoglobulin
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mucin (Tim)-3 (135). In contrast, a classic IFNγ and Th1 response
protects against acute and chronic myocarditis/DCM in BALB/c
mice by decreasing viral replication and preventing remodeling and
fibrosis that leads to DCM (40, 134, 138). Fairweather showed that
testosterone promotes, while 17β-estradiol inhibits myocarditis in
BALB/c mice (55).

When C57BL/6 mice were used in this autoimmune viral
model of CVB3 myocarditis, they developed a fulminant type
of myocarditis (80% inflammation) characterized by a dominant
classic Th1-type immune response but without deaths in wild
type mice (139, 140). Fairweather found that a Th2-type immune
response driven by activation of mast cells and a “mixed”
Th1/Th2/M2b immune response in male BALB/c mice is required
for the progression of myocarditis to DCM because of the critical
role mast cells play in remodeling (Figure 1) (40, 139). In
contrast, C57BL/6 mice, and other black background mice–which
inherently have very few mast cells–do not progress to DCM after
developing myocarditis (40, 141). Importantly, regardless of the
organ, remodeling and fibrosis are known to require mast cells
and are associated with a dominant Th2-type profibrotic immune
response associated with IL-4, IL-33 and TGFβ1 (41, 133, 139). It is
likely that IL-1β produced from mast cells and M2b macrophages in
males increases IL-6, which in combination with TGFβ1, promotes
a Th17 immune response that contributes to fibrosis and DCM
(Figure 1) (142).

The effects of estrogen and/or female sex or testosterone
and/or male sex on myocarditis and DCM from in vivo and
in vitro studies of myocarditis/DCM are summarized in Tables 5, 6.
Studies by other investigators using their own viral or autoimmune
myocarditis animal models have found similar results to ours
(Figure 1 and Tables 5, 6). Cardiac inflammation during
myocarditis is strongly influenced by sex hormones on and in
immune cells, as well as on and in cardiac tissue cells (3). ERα is
primarily found in the uterus, liver, kidney, and heart (128). Sex
hormone receptors are also located on and in many cells of the
immune system including T cells, B cells, monocytes, macrophages,
dendritic cells, and mast cells in humans and rodents (121).
Importantly, only monocyte/macrophages and mast cells have both
nuclear and membrane ERs and ARs (32, 121). ERα primarily
controls E2 modulation of dendritic cell maturation, T cell cytokine
production, and immunoglobulin responses (143–145). In contrast,
signaling through ERβ up-regulates inducible nitric oxide synthase
(iNOS) and nitric oxide generation with ERα suppressing this
response (137, 146). Several important studies now show that when
ERα and ERβ are co-expressed in the same cell, these receptors may
exert opposing effects on gene expression and thus counterbalance
each other (147–150).

In general, estrogen has been found to increase
immunoglobulin synthesis and inhibit B cell apoptosis resulting in
increased antibody and autoantibody levels in females (151, 152),
suppress both T and B cell lymphopoiesis (153), enhance dendritic
cell differentiation and antigen presentation (154), suppress TNFα

and IL-6 levels, (155, 156) increase IL-4 and IFNγ production (143,
157), and promote FoxP3+ T regulatory cell development. (32, 128,
158, 159).

During CVB3 myocarditis in the autoimmune CVB3 model,
females generate a robust immune response to infection, but
they regulate or inhibit the inflammatory response very well
after clearing the viral infection by upregulating almost every

regulatory immune feature, including antibodies, CR1, Tim-3,
CTLA4, Treg, IL-10, anti-inflammatory and anti-fibrotic M2a-type
macrophages, and so forth. In contrast, males develop a robust
proinflammatory immune response but tend not to regulate it well,
instead promoting mast cell and M2b cell responses that are both
proinflammatory and profibrotic (Figure 1).

7. Sex and gender differences in
clinical presentation

Patients with myocarditis can be asymptomatic or present with
reduced exercise capacity, fatigue, and dyspnea. Around 60% of
patients present with antecedent arthralgias, malaise, fever, sweats,
or chills consistent with viral infections (e.g., diarrhea and/or
vomiting with coxsackievirus, dyspnea with SARS-CoV-2) that they
report occurred 1–2 weeks before the onset of symptoms (22, 25,
160). Patients may present with arrhythmias in the form of syncope,
palpitations due to heart block, life-threatening bradyarrhythmias,
and ventricular tachyarrhythmias or even sudden cardiac death,
which is often associated with exertional exercise (22). Chest
pain can range from mild to acute pain which is associated
with myopericarditis in 35% of cases (18, 25). Severe cases of
myocarditis can mimic myocardial infarction (161). Severe forms
of myocarditis, such as fulminant myocarditis, can progress rapidly
and result in acute myocardial failure and cardiogenic shock.

A recent study examined sex differences in clinical presentation
of patients with myocarditis and found 82% (n = 63) were
male, the mean age of patients was the same (around age
40), and BMI was similar at around 27 kg/m2 (162). Percent
LVEF was similar in men (51 ± 13%) compared to women
(57 ± 12%, p = 0.14). However, more men presented with
symptoms of chest pain while women presented more often
with dyspnea. Classic laboratory tests such as high sensitivity
troponin T (hs-TnT), C-reactive protein (CRP), N-terminal-pro
hormone-probrain natriuretic peptide (NT-proBNP), leukocytes,
and thrombocytes were not found to display sex differences except
for myoglobin and creatine kinase, with creatine kinase remaining
significantly different after controlling for sex-specific reference
ranges (162). Overall, comorbidities such as non-obstructive CAD,
arterial hypertension (aHTN), hyperlipidemia, diabetes mellitus,
atrial fibrillation, atrial flutter, and heart failure were rare and
did not differ by sex (162). This is likely due to myocarditis
occurring in young, relatively healthy patients. Larger studies
are needed to better understand sex differences in the clinical
presentation of myocarditis.

Several comorbidities increase the risk of heart failure
including hypertension, diabetes, obesity, smoking history, and
hyperlipidemia. Many of these factors increase risk more in women
than men (163). Type 2 diabetes is an important risk factor
for heart failure for both sexes, but data from the Framingham
Heart Study found that diabetic women had a five-fold greater
risk of heart failure while diabetic men had a two-fold greater
risk (164). Similar findings have been reported for the risk of
hypertension and heart failure (163). In another example, obesity is
more prevalent in women than men and its association with heart
failure risk is greater in women. However, heart failure in women
is more closely associated with HFpEF, while risk of heart failure
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FIGURE 1

Sex differences in the pathogenesis of viral myocarditis and DCM. The summary of mechanisms of sex differences are primarily based on the
Fairweather model of viral myocarditis (see text for full description). DCM, dilated cardiomyopathy; E2, estrogen/17β-estradiol; ♀, female; IFN,
interferon; IL, interleukin; ♂, male; Te, testosterone; Th, T helper cells; TLR, Toll-like receptor.

in myocarditis is associated with HFrEF (163, 165). A recent study
of patients with HFpEF from three clinical trials (4,458 women
and 4,010 men) found that women were older, more often obese
and had hypertension while men were more likely to develop atrial
fibrillation and CAD (166). Despite these risk factors, women had
a lower risk of death compared to men (166). Importantly, all of
these risk factors are higher in Black than White women and men
(167), while myocarditis in the US occurs predominantly in White
individuals. Thus, these factors are less likely to play an important
role in the risk of developing myocarditis because it occurs in young
individuals, prior to the clinical onset of many of these risk factors.
Currently, the greatest known risk factors for myocarditis are young
age and male sex, with the most frequent etiologic agents being viral
infections worldwide and Trypanosoma cruzi in South America
(Chagas disease).

Currently, we are not aware of any studies that examine the
effect of gender on myocarditis and DCM outcomes based on their
study design. These studies are needed in order to understand the
contribution of gender to clinical sex differences outcomes.

8. Sex differences in biomarkers

Men are at an increased risk of developing heart failure from
a number of CVDs including atherosclerosis, myocardial infarct,

myocarditis, and DCM (168). Heart failure prevalence increases
with advancing age in both genders, but increases dramatically
in women >55 years of age in spite of better LV function than
men (107, 169, 170). The strongest predictor of mortality in
men is NYHA classification (107). Patients with chronic heart
failure who have elevated levels of inflammation or inflammatory
mediators/biomarkers have a worse prognosis (171). There are
a number of traditional biomarkers that are used to diagnose
myocarditis such as high sensitivity troponin T, troponin I, NT-
proBNP, creatine kinase, and kappa or lambda immunoglobulin
free light chains, but these markers are not disease specific (22, 162,
172). Tumor necrosis factor (TNF) and IL-6 are well known serum
biomarkers of heart failure, along with IL-1β, but IL-1β is better as
a tissue biomarker rather than a serum biomarker, as its sera levels
are low. IL-1β contributes to Th17 responses by increasing the level
of IL-6 where it combines with IL-23 and TGFβ-1 to drive Th17
immune responses while inhibiting regulatory T cells (Figure 1).

Over the past 10 years, a number of novel serum biomarkers
have been reported that may improve the diagnosis of myocarditis
and predict progression to cardiomyopathy/DCM and heart failure
including sera soluble ST2 (sST2), myoglobin, IL-17-associated
miRs, Th17-associated cytokines, and Th17 vs. Treg ratios (55,
142, 173–175). A study of around 300 patients with clinically
suspected and/or biopsy confirmed myocarditis revealed that sST2
was elevated only in men under 50 years of age but not in
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women, and that higher sST2 levels were associated with elevated
NYHA class heart failure (55). There was a trend for higher
sST2 levels in women over 50 years of age with myocarditis,
but the study was underpowered to confirm the relationship in
women (55). Note that soluble sST2 that is a biomarker for heart
failure is also known as interleukin-1 receptor-like 1 (IL1RL1
GeneID: 9173). This biomarker has been frequently confused,
especially in the CVD literature, with the gene with the same
abbreviation called suppression of tumorigenesis-2 (ST2 GeneID:
6761), which is found on chromosome 11 and represents a putative
locus associated with cancer. Another study found an association
between increased serum sST2 levels and fulminant myocarditis,
a severe form of myocarditis that requires rapid detection to
prevent a fatal outcome (176). However, only four patients were
examined and so sex differences were not reported. Recently, sera
myoglobin levels were found to be a strong predictor of acute
myocarditis based on cardiac MRI and this sera biomarker was
also detected in a viral model of myocarditis (174). Myoglobin
was found to be significantly increased in men with myocarditis
compared to women (p = 0.04) (162). In that study, there were
no sex difference in hs-TnT, CRP, or NT-proBNP (162). Th17 cells

TABLE 5 Effect of estrogen and/or female sex on an inflammatory
response or myocarditis from animal models or tissue culture.

Effect References

myo E2, ♀ Decreases myocarditis (3, 41, 134, 135,
288–291)

myo E2, ♀ Decreases TLR4 expression on
innate immune cells
(macrophages, mast cells)

(132, 266, 292–296)

myo E2, ♀ Decreases TLR4-associated
cytokines (TNF, IL-1, IL-6) and
cardiac damage (CRP, CK)

(266, 272, 293–300)

myo E2 Increases
M2/M2a/myeloid-derived
suppressor cell macrophages

(135, 289, 301–303)

myo E2, ♀ Increases B cells and activates B
cells to promote antibody and
autoantibody response to
infection or self-antigen

(135, 281–283, 304,
305)

myo E2, ♀ Promotes Th2 response and
regulatory T cells and increases
IL-4 and IL-10 cytokines

(132, 134, 290)

myo E2 Decreases IFNγ levels and Th1
cells after infection by
inhibiting Tbet

(306–309)

myo ♀ Protection from oxidative stress
after proinflammatory
activation

(310)

DCM ♀ Female BALB/c mice develop
less DCM after myocarditis
with better LVEF

(41)

DCM E2, ♀ Prevents cardiac hypertrophy
and fibrosis as fibroblasts
express fewer profibrotic factors

(1, 311–313)

CK, creatine kinase; CRP, C-reactive protein; DCM, dilated cardiomyopathy; E2, 17β1-
estradiol; ♀, female; IL, interleukin; IFNγ, interferon gamma; LVEF, left ventricle ejection
fraction; myo, myocarditis; Tbet, Tbx21; Th, T helper; TLR, Toll-like receptor; TNF, tumor
necrosis factor.

TABLE 6 Effect of testosterone and/or male sex on an inflammatory
response or myocarditis from animal models or tissue culture.

Effect References

Myo Te, ♂ Increases myocarditis (41, 132, 288, 314)

Myo Te, ♂ Promotes inflammation
through innate immune cells
(mast cells, natural killer cells)
and cytokines i.e., IFNγ)

(132, 288, 313, 315)

Myo Te, ♂ Increases IL-18-induced Th1
response through TLR4+ mast
cells and macrophages rather
than classic IL-12/STAT4
pathway

(41, 132, 134, 135,
290, 302, 316–319)

Myo Te, ♂ Increases leukocytes in the
heart during myocarditis

(132, 288)

Myo Te, ♂ Increases CD11b+ TSPO+ cells
in the heart during myocarditis

(288)

Myo ♂ Increases expression of P450
oxidoreductase during
myocarditis

(41)

DCM Te, ♂ Increases progression to DCM
after myocarditis with reduced
LVEF

(41)

DCM Te, ♂ Increases cardiac fibrosis after
damage and/or infection

(1, 41, 251, 320–322)

DCM ♂ Th2-type immune response
required for progression to
DCM after myocarditis in males

(41, 133, 139–141)

DCM ♂ Increases proinflammatory
phenotype of aged mice with
DCM

(310, 323, 324)

DCM, dilated cardiomyopathy; IL, interleukin; ♂, male; myo, myocarditis; Th, T helper;
Te, testosterone.

and their associated cytokines (i.e., IL-17A, IL-6, IL-23) were found
to directly correlate with heart failure in a study of patients with
clinically suspected myocarditis/acute DCM (142). Importantly,
IL-17A levels were found to be increased in males compared to
females. Men were also found to have an association between a
polymorphism in IL-17, rs763780, and an increased risk of DCM
(142). This association of IL-17/Th17-associated cytokines with
myocarditis was recently confirmed by separate investigators. They
went on to identify a Th17-associated microRNA that was detected
in the serum of patients and mice with myocarditis (autoimmune
viral model) but not in patients or mouse models of myocardial
infarct (175). The group did not report whether sex differences exist
in the biomarker, but that the microRNA retained its diagnostic
value in models after adjustment for age, sex, ejection fraction, and
serum troponin level (175). Future studies should examine whether
sex and age differences exist in these biomarkers which may provide
insight into their role in the pathogenesis of disease.

9. Sex and gender differences in
management

Standard treatment strategies for myocarditis and DCM
remain as guideline-based heart failure therapies. There is only
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limited available literature on whether sex differences exist in the
use of pharmacologic therapies for myocarditis or DCM. The
Intervention in Myocarditis and Acute Cardiomyopathy-2 (IMAC-
2) trial, which included 373 patients (38% women), found no
significant difference in the use of angiotensin receptor blockers
(ARBs), angiotensin converting enzyme (ACE) inhibitors or beta-
blockers between men and women (37).

Most trials and meta-analyses suggest that medications used
for the treatment of HFrEF reduce event rates in women. However,
individual and sex-specific differences in drug absorption,
distribution, metabolism, and excretion could affect drug doses
needed for optimal efficacy and safety in patients with myocarditis
and DCM (112, 177–180). Although HFrEF guidelines have a
gender neutral dose recommendation for medications, women
typically have a lower body weight, higher proportion of body fat,
and lower plasma volume than men (181). This might result in
higher maximum plasma concentrations of ARBs, ACE inhibitors,
and beta-blockers in women compared to men using a similar
dose. A post hoc analysis by Santema et al., reported sex-based
differences in clinical outcomes in patients with HFrEF (182). In
the Biostat-HF and ASIAN-HF registries, women treated with
ACE inhibitors, ARBs, and beta-blockers had approximately 30%
lower risk of death or hospitalization for heart failure at 50% of
the guideline recommended doses (182). Women had no further
benefit at higher doses. These data suggest that a lower target dose
based on sex might be more appropriate (182). This is important
because women with heart failure experience twice higher rates
of adverse events (e.g., ACE inhibitor cough) from medication
compared to men (180, 183, 184).

Importantly, fewer women compose clinical heart failure trials
that guidelines are based on (185). Although it can be viewed
that fewer women are recruited to trials, the sex difference
in composition in trials may simply reflect sex differences in
disease indicating that trials need to go longer to increase the
number of women enrolled in the study. Challenges to this
include the increased cost, yet it may be necessary to improve
our understanding of sex and gender differences in disease. One
important outcome of the underrepresentation of women is that a
lack of evidence leads to women being less likely to be prescribed
certain evidence-based medications; and when these medications
are prescribed for women, dosing tends to be suboptimal (186,
187). It has been reported that male physicians use lower drug
dosages and fewer drugs in female patients (188). In contrast,
female physicians were found to have superior communication
skills leading to better therapy adherence and improved outcomes
in their patients as a consequence (189). Additionally, male patients
seem to be less therapy adherent than female patients (190). These
differences reflect a complex combination of sex and gender effects
on the efficacy of available therapies.

9.1. Pharmacologic therapy

9.1.1. Beta-blockers
While it has been established that biologic sex influences

the function of the autonomic nervous system, clinical trials
investigating beta-blockers have not sufficiently addressed this fact
(191). Most beta-blocker trials were conducted at a time when
investigators did not appreciate the effect of sex/sex hormones on

pharmacokinetics. No studies to our knowledge have specifically
examined the effect of beta-blockers on myocarditis or examined
sex differences in their effect.

In a study of sex differences in congestive heart failure
outcomes after using bisoprolol or metoprolol, both β1-selective
β-adrenergic antagonists, Simon et al. found that women had
improved survival for all factors examined but that the survival
benefit in women was regardless of beta-blocker therapy (192). In
contrast, a study conducting post hoc analysis of data in women
with heart failure (n = 898) found that metoprolol improved
outcomes in women similar to men (193), which was confirmed
later by a meta-analysis of three clinical trials examining the effect
of beta-blockers on heart failure (194). There is a need for studies to
be conducted with the current understanding of the importance of
sex differences to determine whether conclusions from these older
studies are correct.

9.1.2. ACE inhibitors
The influence of estrogen on the renin-angiotensin-

aldosterone-system (RAAS) has been discussed in numerous
publications, but its clinical implications remain unknown (191,
195–198). Over the years a number of clinical trials have shown
the beneficial effects of ACE inhibitors in HFrEF patients without
considering whether sex differences exist (199–202). However,
several studies have examined sex differences. Garg et al. showed
a 3% higher survival for men compared to women who received
ACE inhibitor therapy in a meta-analysis of approximately 7,000
patients (23% women) enrolled in 32 randomized trials (203). The
ATLAS trial compared low and high doses of lisinopril (2.5–5 mg
daily vs. 32.5–35 mg daily) in 3,164 patients (648 women) with
NYHA class II to IV chronic heart failure and LVEF ≤30% in a
double blind randomized controlled trial (204). Patients receiving a
high dose of lisinopril had a lower risk of death or hospitalization,
which benefited men more than women. Finally, a meta-analysis of
the six largest ACE inhibitor trials also found a significant survival
benefit for men, but not for women (205). These data indicate that
the benefit of ACE inhibitors is greater in men than women.

9.1.3. Angiotensin receptor blockers
Patients with systolic heart failure who cannot tolerate ACE

inhibitor therapy are sometimes treated with ARBs. In the Effects
of High-dose vs. Low-dose Losartan on Clinical Outcomes in
Patients with Heart Failure (HEAAL) study, the authors performed
a randomized, double-blind trial in 255 sites with 3,846 heart failure
patients (30% women) with a NYHA class II-IV, LVEF ≤40% and
an ACE inhibitor intolerance (206). Patients were allocated into
low vs. high dose groups (50 mg vs. 150 mg) and their all-cause
mortality was compared. The higher dose was more beneficial for
men, while the outcome for women did not differ between the two
dose levels (206). A population study comparing sex differences in
therapy response of ARBs vs. ACE inhibitors in 19,698 patients
(10,223 women) found that women seem to benefit more from
ARBs than men (207). These findings correlate with those of other
authors (208, 209).

9.1.4. Angiotensin receptor-neprilysin inhibition
Neprilysin is a membrane bound endopeptidase that cleaves

and degrades vasoactive peptides, including natriuretic peptides,
bradykinin, and adrenomedullin. Neprilysin inhibition has
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been evaluated to counteract neurohormonal overactivation
in the treatment of heart failure. However, neprilysin also
breaks down angiotensin II, so there is limited efficacy with
lone neprilysin inhibition. The combination of ACE inhibitor
therapy and neprilysin inhibition was associated with increased
angioedema (210). Angiotensin receptor-neprilysin inhibition
(ARNI), in the form of sacubitril-valsartan, was compared
to enalapril in the Prospective Comparison of (ARNI) with
Angiotensin Converting Enzyme Inhibitor (ACEI) to Determine
Impact on Global Mortality and Morbidity in Heart Failure
(PARADIGM-HF) trial (211). ARNI therapy was associated
with a reduction in the risk of heart failure hospitalization
and death, and there is now a class I indication for ARNI
therapy in the treatment of patients with HFrEF (46). In
the PARADIGM-HF trial, only 21.8% of patients enrolled
were women. However, ARNI therapy was shown to reduce
cardiovascular mortality and heart failure hospitalizations
in both men and women (HR 0.80, 90.72–0.90; HR 0.77,
0.62–0.95, respectively; p = 0.63) (212). A previous prospective
registry in 10 centers examined sex differences in efficacy,
safety, and tolerability of sacubitril-valsartan and found no
difference in discontinuation of ARNI therapy, no difference
in received dose, and no difference in adverse events between
women and men. A greater proportion of women did have an
improved functional class, and female sex was considered an
independent predictor of functional class improvement (213).
In a post hoc analysis of patients with HFrEF enrolled in the
Prospective Study of Biomarkers, Symptom Improvement and
Ventricular Remodeling During Entresto Therapy for Heart
Failure (PROVE-HF) trial, sex differences in biomarkers,
health status, and remodeling endpoints were evaluated.
This analysis demonstrated a reduction in NT-proBNP
and improvement in cardiac remodeling parameters after
initiation of ARNI therapy in both men and women. Women
experienced improvement in cardiac remodeling parameters
earlier, and women also experienced greater improvement in
perceived quality of life based on changes in their Kansas City
Cardiomyopathy questionnaire. This reiterated the benefit of
ARNI therapy for both sexes.

Angiotensin receptor-neprilysin inhibition therapy has a class
IIb indication for treatment of heart failure with preserved
ejection fraction. This recommendation was based on the
Prospective Comparison of ARNI with ARB Global Outcomes
in Heart Failure with Preserved Ejection Fraction (PARAGON-
HF) trial in which the effects of sacubitril-valsartan were
compared with valsartan (214). Of the participants analyzed,
52% were women, which is one of the largest populations
of women studied in a HFpEF trial. This trial did not meet
its primary endpoint, identified as the composite of first and
recurrent heart failure hospitalizations and cardiovascular death.
A separate subgroup analysis found a more favorable treatment
effect in women compared with men, with sacubitril-valsartan
leading to a greater reduction in HF hospitalizations. Further
analysis demonstrated that women enrolled in the trial were
older, more obese, and had a lower median NT-proBNP and
lower estimated glomerular filtration rate compared with men,
highlighting the difference in clinical profile between women
and men with HFpEF.

9.1.5. Sodium-glucose cotransporter-2 inhibitors
Sodium-glucose cotransporter-2 inhibitors (SGLT2i) have been

shown to reduce HF hospitalizations and cardiovascular death
across all ranges of LVEF, and there is now a class I indication
for SGLT2 inhibitors in HFrEF and a class IIa indication
for HFpEF (46). SGLT2 inhibitors block glucose absorption at
the proximal renal tubule. Additional mechanisms of action
making them beneficial in heart failure are speculative, including
reduction in fibrosis and potential improvement in myocardial
metabolism and endothelial function. Recent trials, including
Dapagliflozin and Prevention of Adverse Outcomes in Heart
Failure (DAPA-HF) (215) and the Empagliflozin Cardiovascular
Outcome Event Trial in Type 2 Diabetes Mellitus (EMPA-REG)
(216), demonstrated a disproportionately lower enrollment of
women compared with men with 23.4 and 29%, respectively,
similar to other HFrEF trials. A prespecified subgroup analysis
of DAPA-HF evaluated sex differences in drug efficacy. This
study found that dapagliflozin reduced the risk of worsening
heart failure and improved symptoms and quality of life similarly
between men and women. This prespecified subgroup analysis
also highlighted the different clinical profile between men and
women with HFrEF, with women being older, less likely to have
an ischemic etiology, with worse renal function, and with lower
rates of HF hospitalizations and cardiovascular death compared to
men. The effects of dapagliflozin on estimated glomerular filtration
rate, body weight, and systolic blood pressure appeared to be
similar between men and women. Safety data and tolerability for
dapagliflozin in women were reassuring, with no increased adverse
events specifically in women (217).

9.1.6. Aldosterone antagonists
As discussed earlier, sex may influence the effect of drugs on the

RAAS. Similar to ACE inhibitors and ARBs, there is no major study
on aldosterone antagonists examining sex differences. Women
have physiologically higher aldosterone levels, whilst aldosterone
is known as a stimulator for proinflammatory pathways, cardiac
remodeling, and the development of epicardial adipose tissue which
is a driver of HFpEF pathogenesis (218–221). This indicates that
inhibiting the final common path of RAAS might be more beneficial
for women compared to men (218–220, 222). The Treatment Of
Preserved Cardiac function in heart failure with an Aldosterone
antagonist Trial (TOPCAT) was a randomized, double-blinded trial
that compared spironolactone vs. placebo in 3,445 patients with
HFpEF. In a post hoc analysis of the study population, Shah et al.
found women to benefit from spironolactone across the whole
LVEF spectrum compared to men who had a benefit only at lower
LVEF (183, 223). All-cause mortality was also reduced by 34%
in women, with no advantage for men (223). Another post hoc
analysis performed by Merrill et al. confirmed the possibility of sex
specific all-cause mortality in patients treated with spironolactone
(224). This effect was only shown in all-cause mortality and not
cardiovascular mortality alone, which the authors attribute to the
lack of statistical power (224).

9.1.7. Digoxin
The Digitalis Investigation Group trial showed that digoxin

reduces hospitalization for heart failure but has no effect on
mortality (225). Several post hoc subgroup analyses of the Digitalis
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Intervention Group trial population created controversy regarding
digoxin therapy in women. Rathore et al. showed that all-cause
mortality in HFrEF patients treated with digitalis was 5.8% higher
in women (95% CI 0.5–11.1) (226). In another retrospective
study including 1,926 women from the Digitalis Investigation
Group trial population, digoxin treatment was found to be a
significant independent covariate predicting all-cause mortality
(227). Adams et al. performed a continuous multivariable analysis
on 4,944 HFrEF patients of the Digitalis Investigation Group
trial population, showing a significant linear relationship between
serum digoxin concentration and mortality but no differences
between the sexes (228).

9.2. Devices

9.2.1. Implantable cardiac defibrillator
The risk of sudden cardiac death remans higher in men than

women at all age groups (229), and develops in women about
10 years later than in men. Women are underrepresented in
randomized implantable cardiac defibrillator (ICD) trials and are
40% less likely to obtain ICD therapy than men (230, 231). A meta-
analysis of five ICD clinical trials found no significant difference
in overall mortality between women and men, but women
experienced significantly fewer appropriate ICD interventions
(232). Importantly, women have a higher chance of complications
during and after device implantation (233, 234). A recent study
of 4,506 heart failure patients (76% male) found that women
with ICDs had significantly less first and recurrent life-threatening
ventricular arrhythmias than men, especially in patients with non-
ischemic cardiomyopathy, suggesting that this therapy may be less
effective for women (235).

9.2.2. Cardiac resynchronization therapy
Cardiac resynchronization therapy-defibrillator (CRT-D)

implantation is an established therapy for patients with chronic
heart failure and a broad QRS complex. In a meta-analysis of
pooled individual patient level data from three CRT-D trials,
women with a relatively narrow QRS width between 130 and
149 ms benefited from CRT-D more than men. In this group,
women had a 76% reduction in heart failure or death (absolute
CRT-D to ICD difference, 23%; HR 0.24, 95% CI 0.11–0.53;
p < 0.001) (236, 237). Women who receive CRT therapy show
a therapy response of 90% over a wide range of QRS duration
(130–175 ms) (238). Women with left bundle branch block and
CRT do have significantly higher ventricular tachycardia-free
survival than men, as shown in a multicenter retrospective study
in 460 patients (105 women) of the Incidence of Arrhythmia
in Spanish Population With a Medtronic Implantable Cardiac
Defibrillator Implant national registry (UMBRELLA) (239). All-
cause mortality did not differ between sexes in this study (239).
Because females have such impressive benefits from CRT, improved
screening and advocacy for CRT implantation in women should be
considered (240).

9.2.3. Mechanical circulatory support
Continuous flow left ventricular assist devices (LVAD) are

utilized as bridge to transplant therapy (BTT) or destination

therapy in chronic end-stage heart failure as well as patients
with acute heart failure with hemodynamic compromise and
cardiogenic shock, including patients with myocarditis. No large-
scale clinical trials have investigated the use of these devices
specifically in patients with myocarditis. One study of ventricular
assist devices (VADs) used in 11 patients (6 women) with acute
viral myocarditis showed similar survival among women and men,
but more men required reoperation and more women developed
right heart failure (241). A review of the use of VADs as a bridge
to transplant in 6 patients (2 women) with giant cell myocarditis
reported that 3 men and 1 woman were still alive after transplant,
whereas 1 woman died of an embolic stroke and 1 man died of a
hemorrhagic stroke before transplant (21).

Although mechanical circulatory support has increased for
both women and men, particularly in the current era of continuous
flow LVADs, information on sex and gender differences remains
limited because sex-specific results are infrequently reported.
Continuous flow LVADs have replaced the prior generation of
pulsatile flow LVADs. Prior studies have also demonstrated that
women in the pulsatile flow era had increased risk of mortality, with
female sex being an independent predictor for hemorrhagic and
ischemic stroke (242). More recent studies did not demonstrate sex
differences in neurologic outcomes, and in the current continuous
flow era, female sex does not appear to correlate with increased risk
of mortality (243).

A previous study that systematically compared outcomes in
women and men using LVADs as a bridge to transplant reported no
survival difference between the sexes, but fewer women than men
underwent heart transplantation (244). In the study, more women
(72 of 104, 69%) than men (184 of 362, 51%) had non-ischemic
cardiomyopathy. Adverse event rates were similar between women
and men except for hemorrhagic stroke, which occurred more
frequently in women, and device-related infections, which occurred
more frequently in men (244). DeFilippis et al. recently described a
United Network for Organ Sharing (UNOS) sample in BTT LVAD
recipients, and women were found to have an increased risk of
waitlist mortality (245). Maukel et al. found that in patients with
LVADs implanted as destination therapy, women had increased
rates of device replacement and recovery compared with men, but
men and women did not differ in clinical outcomes including death
or transplant (246). The HeartMate 3 LVAD is the only currently
commercially available durable continuous-flow LVAD after a
recall of the HeartWare device. In MOMENTUM 3 (Multicenter
Study of MagLev Technology in Patients Undergoing Mechanical
Circulatory Support Therapy with HeartMate 3), HeartMate 3 was
found to be superior to the prior generation axial continuous-
flow LVAD (HeartMate II) in the primary endpoint of survival
free of disabling stroke or reoperation to replace or remove the
device. There was no sex difference in stroke risk, but it is
important to note that the HeartMate 3 cohort only consisted of
31 women (247).

An evaluation of all LVAD-related Emergency Department
visits from 2010 to 2018 found significant sex differences. 27% of
LVAD-related emergency department visits were female patients
while only 21% of all patients with LVAD support in the study were
female, indicating that women were seeking care in the Emergency
Department more frequently than men. Importantly, women were
found to have a lower likelihood of hospital admission compared
with men despite similar presentation and were less likely to
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undergo cardiac catheterization or additional testing, highlighting
inequities in their treatment (248).

9.3. Transplant

Cardiac transplantation is reserved for patients who are
refractory to optimal medical therapy and mechanical circulatory
support. Men are more frequently referred for heart transplantation
than women in both the US and Europe. In a recent retrospective
analysis of patients referred for advanced heart failure therapies,
only 26.6% were women (249). In an assessment by the
International Society for Heart and Lung Transplantation, only
23% of patients who underwent heart transplantation between
2005 and 2010 were women (250). A study that examined DCM
specifically found an even greater gender imbalance in referral
for heart transplantation of 1:6 at the German Heart Center
Berlin and 1:5 in the Eurotransplant database (251). The authors
concluded that the sex difference imbalance seemed to be due
to referral bias, as women in both transplantation cohorts had
more severe heart failure but fewer relative contraindications than
men at the time of referral. There is no data on whether there
are sex differences in referral for transplantation for patients with
myocarditis. In October 2018, the UNOS implemented a new
donor heart allocation system, and recent analyses have highlighted
new trends in the allocation system, such as increased temporary
mechanical circulatory support (252). Further studies are needed
to determine the impact on sex differences in outcomes with the
new allocation system.

10. Future directions

There are a number of areas that are important to consider for
the future. Disaggregation of sex-based analyses is a critical part of
studies that include both sexes (8). Not reporting sex-based analyses
can give an incorrect depiction of a disease or treatment as sex-
neutral in risk or effect. This is particularly important for studies
involving the immune response, where hormone response elements
often alter gene responses in opposite directions (i.e., estrogen
response element decreases genes while androgen response element
increases the same genes) so if the analysis is not conducted
according to sex then the two sexes cancel each other out to
suggest no relationship. Even among cardiovascular clinical trials
that include both sexes, a minority (33%) were found to actually
report the data analysis (253). Future work needs to include data,
even if non-significant, between the sexes (1). Although many
advances have been made in the past decade, many of the same
gaps remain. There is a need for a better understanding of the
causes of myocarditis in order to identify more specific biomarkers
of disease onset and progression. This can be better accomplished
using translational models of myocarditis and by obtaining cardiac
biopsies. There remains a need to understand the effect of genes that
are expressed on the X chromosome in mediating sex differences in
the immune response during myocarditis. There is also a need to
bank serum and tissue samples of myocarditis and DCM patients
in the US, as has been done for years overseas, so that a better
understanding of the viruses and other causes of myocarditis can

be identified, and disease-specific therapies developed. Myocarditis
differs profoundly by sex, and data in animal and human studies
need to interpret their findings in relation to sex and gender
differences to improve care for myocarditis and DCM patients in
the future. In order to gain an understanding of how gender affects
myocarditis and DCM, studies need to be designed specifically to
examine this question.

11. Conclusion

Over the last decade, interest in myocarditis and DCM has
dramatically increased and many new insights have been gained.
Once a limited topic on what has been considered a rare condition,
myocarditis has entered the public eye with the outbreak of
the worldwide SARS-CoV-2 pandemic. While the past decade of
research has brought tremendous insight into the pathogenesis
of myocarditis and DCM, many of the same problems identified
a decade ago remain. There are no unified global standards for
the diagnosis of myocarditis. Most of the clinical insights on
myocarditis have come from biopsy samples, which are rarely taken
in the US and especially for the most common form of myocarditis,
lymphocytic myocarditis, which hinders progress. There are few
biobanks of myocarditis samples in the US which stymies evidence-
based research advances. Even with the increased understanding
of the importance of sex and gender, there is lack of analysis
of sex and age differences in most studies, both clinically and
in animal models. Furthermore, there is a lack of studies that
specifically examine the role of gender on disease pathogenesis
or outcomes. Importantly, older studies need to be reassessed
considering our current understanding of the effects of sex and
age on myocarditis and DCM in all facets of the disease, from
epidemiology and pathogenesis, to current treatment guidelines
and therapies. Fortunately, highly translational animal models of
myocarditis that progress to DCM exist and are increasing our
understanding of the role of sex and age in disease. In conclusion,
a heightened understanding of sex and gender differences is critical
for improving diagnostic strategies and clinical management that
will lead to optimal sex- and gender-based care for patients with
myocarditis and DCM.
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